Toggle light / dark theme

Via the Global Security Newswire:

WASHINGTON — The United Kingdom announced today that it had finished destroying thousands of decades-old chemical weapons (see GSN, June 6, 2002).

The elimination of the last known “legacy” munitions containing agents such as sulfur mustard and phosgene is in keeping with the nation’s obligations under the Chemical Weapon Convention, a Defense Ministry spokesman said.

The British military began using chemical weapons in World War I, and maintained an offensive program until 1956. The Porton Down research facility was already regularly destroying weapons when the treaty entered into force in the United Kingdom in 1997. A total of 7,000 munitions have been destroyed since 1989, with work ending on March 7.

The 3,812 weapons eliminated at Porton Down over the last decade were recovered individually or in small numbers from existing or former military sites. Most dated from 1939 to 1945, The Herald newspaper reported. The artillery and mortar shells were “rusty, old, they couldn’t be used,” the Defense Ministry spokesman said.

Some weapons were drained of agent and then incinerated, while others were detonated if they were found not to contain any dangerous substances. The entire project cost nearly $20 million.

Though chemical weapons are not really an existential threat today, when combined with nanotechnological delivery vectors they could become effective across incredible ranges. Relinquishment of chemical weapons is also proof that nations are willing to give up a class of weapons when it is this inhumane.

Using maps of population density, the researchers charted the places likely to suffer the most casualties from asteroids. As might be expected, countries with large coastal populations turned out to be most vulnerable, with China, Indonesia, India, Japan and the US in the top five spots.

The team focused on smaller asteroids because they hit the Earth more frequently. An asteroid a few hundred metres across hits the planet about once every 10,000 years, on average, while those larger than 1 kilometre hit only every 100,000 years or so. Small asteroids are also harder to spot. They considered a range of impact energies corresponding to asteroids between 100 and 500 metres across, striking with typical solar system speeds of about 20,000 kilometres per second.


Simulations show the asteroid impact locations that would produce the most casualties in red. The Pacific coast of Asia is a particularly deadly place for an asteroid to strike because of tsunamis, while a direct strike on some densely populated inland areas could also cause a heavy toll (Illustration: Nick Bailey et al/University of Southampton)

The US faced the worst potential economic losses, since it has a lot of infrastructure on coastlines facing two different oceans. China was second, followed by Sweden, Canada, and Japan.

The Lifeboat asteroid shield project helps to address these risks and Tsunami warning and response systems would also help mitigate loss of life from ocean impacts.

From Physorg.com:

New Mexico’s governor Bill Richardson worked with the southwest desert state’s legislature to secure 33 million dollars for the final design of “Spaceport America,” the world’s first commercial spaceport.

Now the voters in the Dona Ana County municipality where the project is to be located will weigh in, in a referendum scheduled for April 3 on a new sales tax to fund the project.

If Spaceport America meets with voter approval, a maiden space voyage is expected in two to three years. If passed, the new tax would add 25 cents to a 100-dollar purchase, bringing in about 6.5 million dollars per year.

The project cleared a first hurdle earlier this month, garnering broad support from local lawmakers.

“The legislature gave its unanimous support to move forward aggressively with the spaceport,” said Rick Homans, chairman of the New Mexico Spaceport Authority, in a statement.

“They have given us the green light to put all systems ‘Go,’” he said.

New Mexico officials acknowledge being swept up in something of a space race in their bid to be the world’s first functioning spaceport.

Race away! It’s about time that the action in the private spaceflight sector is really picking up. The more players, the more competition, the more progress! Although launch costs are about $5,000/lb. at present, efforts like this will push costs down to $1,000/lb., and then to $500/lb. and below, far sooner than many people think!

Despite bringing us “pollution free” power, one of the unfortunate side effects from the nuclear age is radioactive waste. This deadly byproduct has the power of not only destroying the land around it in our present age, but for thousands of years into the future.

Although there have been various discussions on how to “deal” with this deadly waste product, it seems that some Israeli scientists have found an ingenious way of not only removing it but providing an incentive along the way.

(Israel 21st Century) “It also makes a good recyclable material for building and paving roads,” he assures them. Earlier, Shrem told ISRAEL21c that EER can take low-radioactive, medical and municipal solid waste and produce from it clean energy that “can be used for just about anything.”

Using a system called plasma gasification melting technology (PGM) developed by scientists from Russia’s Kurchatov Institute research center, the Radon Institute in Russia, and Israel’s Technion Institute — EER combines high temperatures and low-radioactive energy to transform waste.

“We go up to 7,000 degrees centigrade and end at 1,400 centigrade,” says Moshe Stern, founder and president of the Ramat Gan-based company.

Shrem adds that EER’s waste disposal rector does not harm the environment and leaves no surface water, groundwater, or soil pollution in its wake.

What makes this technology really impressive is the cost factor compared to the current methods of dealing with nuclear waste. In order to keep citizens out of harms way, governments were forced to bury this material at a price tag of $30,000 a ton.

Moshe Stern’s technology on the other hand can permanently remove this deadly byproduct for about $3,000 a ton! Already countries like Ukraine seem very interested in using this technology to dispose of their wastes, and hopefully Stern’s invention will be used by other nations as well (as the less of a mess we can leave the future generation, the better off we will be).

Originally published on IsraGood and republished here for your enjoyment.

We welcome one of our most generous donors, Sergio M.L. Tarrero, to the Lifeboat Foundation staff as our International Director of Audiovisual Communications. Mr. Tarrero is currently working on a documentary on existential risk. His bio begins as follows:

Sergio Martínez de Lahidalga Tarrero, BSc, is a screenwriter and filmmaker deeply concerned with the institutionally mediated transmission of socially corrosive beliefs, thoughts, and behaviors. His abiding interest in the forces that drive people apart, particularly those deriving from religious doctrine, inspired him from a young age to ponder what it would take to move people to embrace the primacy of rational thinking over enculturated dogma. In Sergio’s view, an important idea to disseminate widely is that an ethical and contemplative life does not depend on theological postulates.

Read his whole bio here. In a world where the audiovisual medium is one of the most tangible and memorable forms of communication, Sergio’s filmmaking skills will contribute invaluably to the Lifeboat Foundation’s core mission.

From ScienceDaily.com:

Using lasers and tuning forks, researchers at Pacific Northwest National Laboratory have developed a chemical weapon agent sensing technique that promises to meet or exceed current and emerging defense and homeland security chemical detection requirements. The technique, called Quartz Laser Photo-Acoustic Sensing, or “QPAS,” is now ready for prototyping and field testing.

PNNL, a Department of Energy national laboratory, has demonstrated QPAS’s ability to detect gaseous nerve agent surrogates. In one test, researchers used diisopropyl methyl phosphonate (DIMP), which is a chemical compound that’s similar to sarin. QPAS detected DIMP at the sub-part-per-billion level in less than one minute. The miniscule level is similar to letting one drop of liquid DIMP evaporate into a volume of air that would fill more than two Olympic-size swimming pools.

“QPAS is an extremely sensitive and selective chemical detection technique that can be miniaturized and yet is still practical to operate in field environments,” said Michael Wojcik, a research scientist at PNNL. “The laser, tuning fork and other technology needed for QPAS are so simple, and yet robust, that further development is a low-risk investment, and we’re eager to take it to the next level.”

The instrument is based on Laser Photo-Acoustic Sensing, or LPAS, and infrared Quantum Cascade Lasers, or QCLs. LPAS is an exquisitely sensitive form of optical absorption spectroscopy, where a pulsed laser beam creates a brief absorption in a sample gas, which in turn creates a very small acoustic signal. A miniature quartz tuning fork acts as a “microphone” to record the resulting sound wave.

It would probably be a good idea to have these installed all over major cities. Such an action would radically improve the government’s ability to quickly respond to a chemical disaster.

That’s what the radius of destruction would look like if a 10 kT nuke were detonated on top of my house! Put in your own zip code, and see how bad it would be for you.

I found this page by following a link from NTI, the global security organization founded by Ted Turner. Warren Buffet is another billionaire who supports NTI and encourages his shareholders to read books and watch films about the threat of nuclear terrorism.

You can order a free DVD of Last Best Chance, a film warning against nuclear terrorism, by visiting here.

Science Daily — Almost 62 years after detonation of the first atomic
bombs, the United States is considering controversial proposals to
produce a new generation of nuclear weapons and revamp its nuclear
weapons complex, according to an article scheduled for the March 19
issue of Chemical & Engineering News (C&EN), ACS’ weekly newsmagazine.

In the article, C&EN senior editor Jeff Johnson points out that the
proposals come at a time of growing fears about potential new nuclear
powers, such as North Korea and Iran, and potential diversion of
nuclear weapons into the hands of terrorists. The U.S. Department of
Energy’s National Nuclear Security Administration (NNSA), which
oversees design, production and maintenance of nuclear weapons,
developed the proposals.

One part of the plan, for instance, calls for production of the
“renewable, replacement warhead (RRW),” a new nuclear weapon that NNSA
says will be easier and environmentally cleaner to manufacture and
more difficult for potential terrorists to disassemble or detonate.

The article describes details of the RRW, envisioned for production by
2012, and discusses differing opinions about the new proposals for the
U.S. nuclear arsenal, now believed to number about 10,000 warheads.

Some information on how to reduce nuclear bomb casualties

If you are downwind of the blast, look at tree tops to see direction of wind and then flee perpendicular to the wind. Because the plumes are significantly longer than they are wide, moving as little as one to five miles perpendicular to the plume can mean the difference between life and death. People in areas upwind of the detonation site, on the other hand, are safest staying where they are.

Today’s hospital burn units provide exemplary but time consuming care to burn victims, who typically arrive sporadically and in small numbers. A nuclear attack would bring a sudden surge of patients, but the medical system could dramatically minimize fatalities by training staff and equipping non-medical people to treat second-degree burn victims in much larger numbers. The focus must be on cleaning the wounds to avoid fatal infections, administering painkillers and then moving on to the next patient. And all of this must occur in the field, since thousands of victims would not make it to a hospital.

An excellent article by Bruce Schneier on the psychology of security is available here. It starts as follows:

Security is both a feeling and a reality. And they’re not the same.

The reality of security is mathematical, based on the probability of different risks and the effectiveness of different countermeasures. We can calculate how secure your home is from burglary, based on such factors as the crime rate in the neighborhood you live in and your door-locking habits. We can calculate how likely it is for you to be murdered, either on the streets by a stranger or in your home by a family member. Or how likely you are to be the victim of identity theft. Given a large enough set of statistics on criminal acts, it’s not even hard; insurance companies do it all the time.

We can also calculate how much more secure a burglar alarm will make your home, or how well a credit freeze will protect you from identity theft. Again, given enough data, it’s easy.

But security is also a feeling, based not on probabilities and mathematical calculations, but on your psychological reactions to both risks and countermeasures. You might feel terribly afraid of terrorism, or you might feel like it’s not something worth worrying about. You might feel safer when you see people taking their shoes off at airport metal detectors, or you might not. You might feel that you’re at high risk of burglary, medium risk of murder, and low risk of identity theft. And your neighbor, in the exact same situation, might feel that he’s at high risk of identity theft, medium risk of burglary, and low risk of murder.

The difference between the feeling of security and true security, and the difference between pursuing one thing or the other, is central to the Lifeboat Foundation’s mission. For example, planetwide risks like synthetic life or unfriendly AI should be analyzed more thoroughly and given more effort than prevention of nuclear proliferation, even if we consider the near-term probability of the former scenarios to be less, simply because their scope is so much larger. For more on this topic, see Cognitive biases affecting judgement of existential risks.