Toggle light / dark theme

Some information on how to reduce nuclear bomb casualties

If you are downwind of the blast, look at tree tops to see direction of wind and then flee perpendicular to the wind. Because the plumes are significantly longer than they are wide, moving as little as one to five miles perpendicular to the plume can mean the difference between life and death. People in areas upwind of the detonation site, on the other hand, are safest staying where they are.

Today’s hospital burn units provide exemplary but time consuming care to burn victims, who typically arrive sporadically and in small numbers. A nuclear attack would bring a sudden surge of patients, but the medical system could dramatically minimize fatalities by training staff and equipping non-medical people to treat second-degree burn victims in much larger numbers. The focus must be on cleaning the wounds to avoid fatal infections, administering painkillers and then moving on to the next patient. And all of this must occur in the field, since thousands of victims would not make it to a hospital.

An excellent article by Bruce Schneier on the psychology of security is available here. It starts as follows:

Security is both a feeling and a reality. And they’re not the same.

The reality of security is mathematical, based on the probability of different risks and the effectiveness of different countermeasures. We can calculate how secure your home is from burglary, based on such factors as the crime rate in the neighborhood you live in and your door-locking habits. We can calculate how likely it is for you to be murdered, either on the streets by a stranger or in your home by a family member. Or how likely you are to be the victim of identity theft. Given a large enough set of statistics on criminal acts, it’s not even hard; insurance companies do it all the time.

We can also calculate how much more secure a burglar alarm will make your home, or how well a credit freeze will protect you from identity theft. Again, given enough data, it’s easy.

But security is also a feeling, based not on probabilities and mathematical calculations, but on your psychological reactions to both risks and countermeasures. You might feel terribly afraid of terrorism, or you might feel like it’s not something worth worrying about. You might feel safer when you see people taking their shoes off at airport metal detectors, or you might not. You might feel that you’re at high risk of burglary, medium risk of murder, and low risk of identity theft. And your neighbor, in the exact same situation, might feel that he’s at high risk of identity theft, medium risk of burglary, and low risk of murder.

darpaachievements.jpg

DARPA (the defense advanced research projects agency) is the R&D arm of he US military for far-reaching future technology. What most people do not realize is how much revolutionary medical technology comes out of this agency’s military R&D programs. For those in need of background, you can read about the Army & DARPA’s future soldier Landwarrior program and its medtech offshoots as well as why DARPA does medical research and development that industry won’t. Fear of these future military technologies runs high with a push towards neural activation as a weapon, direct brain-computer interfaces, and drones. However, the new program has enormous potential for revolutionary medical progess as well.

It has been said technology is neutral, it is the application that is either good or evil. (It is worth a side-track to read a discussion on this concept)

The Areas of Focus for DARPA in 2007 and Forward Are:

A valuable paper by Jason Matheny of the University of Maryland is “Reducing the Risk of Human Extinction”. The abstract is as follows:

In this century a number of events could extinguish humanity. The probability of these events may be very low, but the expected value of preventing them could be high, as it represents the value of all future lives. We review the challenges to studying human extinction risks and, by way of example, estimate the cost-effectiveness of preventing extinction-level asteroid impacts.

Continue reading it here.

A better atomic force microscope from Japan:

Credit: Oscar Custance, Osaka University

“A new type of atomic force microscope (AFM) has been developed that can “fingerprint” the chemical identity of individual atoms on a material’s surface. This is one step ahead of existing AFMs, which can only detect the position of atoms. The device determines local composition and structure using a precise calibration method, and can even be used to manipulate specific atomic species. The team demonstrated their “fingerprinting” technique by using an atomic force microscope (AFM) to distinguish atoms of tin (blue) and lead (green) deposited on a silicon substrate (red).”

NASA estimates the cost to find at least 90 percent of the 20,000 potentially hazardous asteroids and comets by 2020 would be about $1 billion, according to a report NASA will release later this week. It would cost $300 million if a asteroid locating telescope was piggybacked on another vehicle. The report was previewed Monday at a Planetary Defense Conference in Washington.

The agency is already tracking bigger objects, at least 3,300 feet in diameter, that could wipe out most life on Earth, much like what is theorized to have happened to dinosaurs 65 million years ago. But even that search, which has spotted 769 asteroids and comets — none of which is on course to hit Earth — is behind schedule. It’s supposed to be complete by the end of next year.

A cheaper option would be to simply piggyback on other agencies’ telescopes, a cost of about $300 million, also rejected, Johnson said.

Here is a piece of news from early last month, via CNN:

WASHINGTON (AP) — Hackers briefly overwhelmed at least three of the 13 computers that help manage global computer traffic Tuesday in one of the most significant attacks against the Internet since 2002.

Experts said the unusually powerful attacks lasted for hours but passed largely unnoticed by most computer users, a testament to the resiliency of the Internet.

Behind the scenes, computer scientists worldwide raced to cope with enormous volumes of data that threatened to saturate some of the Internet’s most vital pipelines.

From Physorg.com:

With a typical launch cost for a spaceship around $20 million, it’s difficult to practically conceive of a space industry beyond federally funded agencies. Nevertheless, many people believe that expanding space travel—whether for research purposes, entertainment, or even colonization—is not impractical. Bridging the economic hurdle may be technologies such as the maglev launch assist. According to an analysis, the cost of launching payloads into the low earth orbit with maglev may be achieved with only hundreds of dollars per pound (John Olds and Peter Bellini).

Most recently, researchers in a group including Wenjiang Yang and his colleagues from the Beijing University of Aeronautics and Astronautics and the Chinese Academy of Sciences have investigated the possibility of the “Maglifter,” a maglev launch assist vehicle originally proposed in the 1980s. In this system, a spaceship would be magnetically levitated over a track and accelerated up an incline, lifting off when it reaches a velocity of 1,000 km/hr (620 miles/hr). The main cost-saving areas would come from reduced fuel consumption and the reduced mass of the spaceship.

“Magnetic levitation is a promising technology for future space transportation,” Yang told PhysOrg.com. “The most expensive part of space missions to low-Earth orbit is the first few seconds—getting off the ground.”

“The importance of the space sector can be emphasized by the number of spacecrafts launched. In the period from 1957 till 2005, 6376 spacecraft have been launched at an average of 133 per year. The has been a decrease in the number of spacecrafts launched in the recent years with 78 launched in 2005. Of the 6378 launches, 56.8% were military spacecrafts and 43.2 were civilian. 245 manned missions have been launched in this period. 1674 communication or weather satellites were also launched. The remaining spacecraft launches has been exploration missions.”

Read the entire report here (requires free registration)

Graduate student (University of Alabama Huntsville) Blake Anderton wrote his master’s thesis on “Application of Mode-locked lasers to asteroid characterization and mitigation.” Undergraduate Gordon Aiken won a prize at a recent student conference for his poster and presentation “Space positioned LIDAR system for characterization and mitigation of Near Earth Objects.” And members of the group are building a laser system “that is the grandfather of the laser that will push the asteroids,” Fork said.

Anderton’s mode locked lasers could characterize asteroids up to 1 AU away (1.5 x 10 to the 11 meters). Arecibo and other radar observatories can only detect objects up to 0.1 AU away, so in theory a laser would represent a vast improvement over radar.

A one page powerpoint describes their asteroid detection and deflection approach About 12 of the 1AU detection volumes (around the sun in the asteroid belt) would be needed to cover the main areas for near earth asteroids.

40KW femtosecond lasers could deflect an asteroid the size of Apophis (320meters, would hit with 880 megaton force) given one year of illumination and an early start in the trajectory.