Toggle light / dark theme

We welcome one of our most generous donors, Sergio M.L. Tarrero, to the Lifeboat Foundation staff as our International Director of Audiovisual Communications. Mr. Tarrero is currently working on a documentary on existential risk. His bio begins as follows:

Sergio Martínez de Lahidalga Tarrero, BSc, is a screenwriter and filmmaker deeply concerned with the institutionally mediated transmission of socially corrosive beliefs, thoughts, and behaviors. His abiding interest in the forces that drive people apart, particularly those deriving from religious doctrine, inspired him from a young age to ponder what it would take to move people to embrace the primacy of rational thinking over enculturated dogma. In Sergio’s view, an important idea to disseminate widely is that an ethical and contemplative life does not depend on theological postulates.

Read his whole bio here. In a world where the audiovisual medium is one of the most tangible and memorable forms of communication, Sergio’s filmmaking skills will contribute invaluably to the Lifeboat Foundation’s core mission.

From ScienceDaily.com:

Using lasers and tuning forks, researchers at Pacific Northwest National Laboratory have developed a chemical weapon agent sensing technique that promises to meet or exceed current and emerging defense and homeland security chemical detection requirements. The technique, called Quartz Laser Photo-Acoustic Sensing, or “QPAS,” is now ready for prototyping and field testing.

PNNL, a Department of Energy national laboratory, has demonstrated QPAS’s ability to detect gaseous nerve agent surrogates. In one test, researchers used diisopropyl methyl phosphonate (DIMP), which is a chemical compound that’s similar to sarin. QPAS detected DIMP at the sub-part-per-billion level in less than one minute. The miniscule level is similar to letting one drop of liquid DIMP evaporate into a volume of air that would fill more than two Olympic-size swimming pools.

“QPAS is an extremely sensitive and selective chemical detection technique that can be miniaturized and yet is still practical to operate in field environments,” said Michael Wojcik, a research scientist at PNNL. “The laser, tuning fork and other technology needed for QPAS are so simple, and yet robust, that further development is a low-risk investment, and we’re eager to take it to the next level.”

Continue reading “New Sensor Detects Gaseous Chemical Weapon Surrogates In 45 Seconds” | >

That’s what the radius of destruction would look like if a 10 kT nuke were detonated on top of my house! Put in your own zip code, and see how bad it would be for you.

I found this page by following a link from NTI, the global security organization founded by Ted Turner. Warren Buffet is another billionaire who supports NTI and encourages his shareholders to read books and watch films about the threat of nuclear terrorism.

You can order a free DVD of Last Best Chance, a film warning against nuclear terrorism, by visiting here.

Science Daily — Almost 62 years after detonation of the first atomic
bombs, the United States is considering controversial proposals to
produce a new generation of nuclear weapons and revamp its nuclear
weapons complex, according to an article scheduled for the March 19
issue of Chemical & Engineering News (C&EN), ACS’ weekly newsmagazine.

In the article, C&EN senior editor Jeff Johnson points out that the
proposals come at a time of growing fears about potential new nuclear
powers, such as North Korea and Iran, and potential diversion of
nuclear weapons into the hands of terrorists. The U.S. Department of
Energy’s National Nuclear Security Administration (NNSA), which
oversees design, production and maintenance of nuclear weapons,
developed the proposals.

One part of the plan, for instance, calls for production of the
“renewable, replacement warhead (RRW),” a new nuclear weapon that NNSA
says will be easier and environmentally cleaner to manufacture and
more difficult for potential terrorists to disassemble or detonate.

Continue reading “U.S. Envisions A New Generation Of Nuclear Weapons” | >

Some information on how to reduce nuclear bomb casualties

If you are downwind of the blast, look at tree tops to see direction of wind and then flee perpendicular to the wind. Because the plumes are significantly longer than they are wide, moving as little as one to five miles perpendicular to the plume can mean the difference between life and death. People in areas upwind of the detonation site, on the other hand, are safest staying where they are.

Today’s hospital burn units provide exemplary but time consuming care to burn victims, who typically arrive sporadically and in small numbers. A nuclear attack would bring a sudden surge of patients, but the medical system could dramatically minimize fatalities by training staff and equipping non-medical people to treat second-degree burn victims in much larger numbers. The focus must be on cleaning the wounds to avoid fatal infections, administering painkillers and then moving on to the next patient. And all of this must occur in the field, since thousands of victims would not make it to a hospital.

An excellent article by Bruce Schneier on the psychology of security is available here. It starts as follows:

Security is both a feeling and a reality. And they’re not the same.

The reality of security is mathematical, based on the probability of different risks and the effectiveness of different countermeasures. We can calculate how secure your home is from burglary, based on such factors as the crime rate in the neighborhood you live in and your door-locking habits. We can calculate how likely it is for you to be murdered, either on the streets by a stranger or in your home by a family member. Or how likely you are to be the victim of identity theft. Given a large enough set of statistics on criminal acts, it’s not even hard; insurance companies do it all the time.

We can also calculate how much more secure a burglar alarm will make your home, or how well a credit freeze will protect you from identity theft. Again, given enough data, it’s easy.

But security is also a feeling, based not on probabilities and mathematical calculations, but on your psychological reactions to both risks and countermeasures. You might feel terribly afraid of terrorism, or you might feel like it’s not something worth worrying about. You might feel safer when you see people taking their shoes off at airport metal detectors, or you might not. You might feel that you’re at high risk of burglary, medium risk of murder, and low risk of identity theft. And your neighbor, in the exact same situation, might feel that he’s at high risk of identity theft, medium risk of burglary, and low risk of murder.

Continue reading “The Psychology of Security” | >

darpaachievements.jpg

DARPA (the defense advanced research projects agency) is the R&D arm of he US military for far-reaching future technology. What most people do not realize is how much revolutionary medical technology comes out of this agency’s military R&D programs. For those in need of background, you can read about the Army & DARPA’s future soldier Landwarrior program and its medtech offshoots as well as why DARPA does medical research and development that industry won’t. Fear of these future military technologies runs high with a push towards neural activation as a weapon, direct brain-computer interfaces, and drones. However, the new program has enormous potential for revolutionary medical progess as well.

It has been said technology is neutral, it is the application that is either good or evil. (It is worth a side-track to read a discussion on this concept)

The Areas of Focus for DARPA in 2007 and Forward Are:

Continue reading “2007 DARPA Military Technology Plan: Future Medical Promise or Danger?” | >

A valuable paper by Jason Matheny of the University of Maryland is “Reducing the Risk of Human Extinction”. The abstract is as follows:

In this century a number of events could extinguish humanity. The probability of these events may be very low, but the expected value of preventing them could be high, as it represents the value of all future lives. We review the challenges to studying human extinction risks and, by way of example, estimate the cost-effectiveness of preventing extinction-level asteroid impacts.

Continue reading it here.

A better atomic force microscope from Japan:

Credit: Oscar Custance, Osaka University

“A new type of atomic force microscope (AFM) has been developed that can “fingerprint” the chemical identity of individual atoms on a material’s surface. This is one step ahead of existing AFMs, which can only detect the position of atoms. The device determines local composition and structure using a precise calibration method, and can even be used to manipulate specific atomic species. The team demonstrated their “fingerprinting” technique by using an atomic force microscope (AFM) to distinguish atoms of tin (blue) and lead (green) deposited on a silicon substrate (red).”

Continue reading “Impressive Recent Progress in Nanotechnology” | >

NASA estimates the cost to find at least 90 percent of the 20,000 potentially hazardous asteroids and comets by 2020 would be about $1 billion, according to a report NASA will release later this week. It would cost $300 million if a asteroid locating telescope was piggybacked on another vehicle. The report was previewed Monday at a Planetary Defense Conference in Washington.

The agency is already tracking bigger objects, at least 3,300 feet in diameter, that could wipe out most life on Earth, much like what is theorized to have happened to dinosaurs 65 million years ago. But even that search, which has spotted 769 asteroids and comets — none of which is on course to hit Earth — is behind schedule. It’s supposed to be complete by the end of next year.

A cheaper option would be to simply piggyback on other agencies’ telescopes, a cost of about $300 million, also rejected, Johnson said.

Continue reading “United States unwilling to spend 0 million for asteroid location” | >