Menu

Blog

Page 1222

Mar 9, 2024

New insights into the growth and spread of cancer cells

Posted by in categories: biotech/medical, genetics

Cancer cells are characterized by their aggressiveness: they grow rapidly and spread to other parts of the body. To enable this, numerous mechanisms come into play, and one of them involves a protein called MYC, which activates certain genes on the cancer cell’s DNA strand, causing the cancer cell to grow and divide.

The MYC protein is also present in healthy individuals, where it plays a crucial role in regulating many .

“When cancer occurs, it is due to an accumulation of mutations in our DNA, often resulting in the overactivation of the MYC protein. Therefore, this protein plays a crucial role in most cancer forms,” says Rasmus Siersbæk, head of research at the Department of Biochemistry and Molecular Biology, University of Southern Denmark.

Mar 9, 2024

Advances Needed for Diabetic Foot Infections, Experts Say

Posted by in categories: biotech/medical, robotics/AI

With a mobile app powered by artificial intelligence (AI), Caitlin Hicks, MD, MS, reviews selfies of patients’ feet in real time to track their wounds as part of a clinical trial. The app saves time for Hicks, a vascular surgeon at Johns Hopkins Medicine, but also reduces clinic trips for her patients with diabetes in inner-city Baltimore, many of whom are elderly and less mobile or have other socioeconomic barriers to care. Hicks knows that for these patients, wound vigilance is the linchpin to preventing infection, hospitalization, or, worse, amputation or even death.

Despite their crushing toll, diabetic foot infections remain stubbornly hard to treat, but multidisciplinary care teams, new drugs and devices on the horizon, and practical solutions to socioeconomic factors could budge the needle.

Mar 9, 2024

Humans aren’t overpopulated. We’re aging and shrinking

Posted by in category: life extension

Too few babies — not — is likely to be a major problem this century.

Mar 9, 2024

Beam balance designs could elucidate the origins of dark energy

Posted by in categories: cosmology, physics

One of the greatest problems in modern physics is to reconcile the enormous difference between the energy carried by random fluctuations in the vacuum of space, and the dark energy driving the universe’s expansion.

Through new research published in The European Physical Journal Plus, researchers led by Enrico Calloni at the University of Naples Federico II, Italy, have unveiled a prototype for an ultra-precise balance instrument, which they hope could be used to measure the interaction between these vacuum fluctuations and gravitational fields. With some further improvements, the instrument could eventually enable researchers to shed new light on the enigmatic origins of .

Inside a vacuum, are constantly emerging and disappearing through random fluctuations, so that even though the space doesn’t contain any matter, it still carries a certain amount of energy. Through their research, Calloni’s team aimed to measure the influence of these fluctuations using a state-of-the-art beam balance.

Mar 9, 2024

NeuroAge wants to reprogram your brain back to a younger state

Posted by in categories: biotech/medical, life extension, neuroscience

Startup seeks new biomarkers as it develops cellular reprogramming drugs designed to reverse brain aging and combat dementia.

Mar 9, 2024

Regulatory mechanism that keeps the immune system in check identified

Posted by in categories: biotech/medical, life extension

Researchers from the UoC’s Center for Biochemistry at the Faculty of Medicine and the UoC CECAD Cluster of Excellence in Aging Research have discovered that an excessive immune response can be prevented by the intramembrane protease RHBDL4.

In a study now published in Nature Communications under the title “RHBDL4-triggered downregulation of COPII adaptor protein TMED7 suppresses TLR4-mediated inflammatory signaling,” the previously unknown regulatory mechanism is described.

The researchers discovered that the cleavage of a cargo receptor by a so-called intramembrane reduces the localization of a central immune receptor on the and thereby the risk of an overreaction of the immune system.

Mar 9, 2024

Discovery of ‘molecular machine’ brings new immune therapies a step closer

Posted by in categories: biotech/medical, nanotechnology

Guanylate binding proteins (GBP) were discovered by YSM’s John MacMicking, PhD, and colleagues over a decade ago as major organizers of cellular immune response.

In a recent study, MacMicking’s team used advanced cryo-and electron microscope technology to visualize in high resolution the way GBPs…

Continue reading “Discovery of ‘molecular machine’ brings new immune therapies a step closer” »

Mar 9, 2024

Neutron star mergers: New physics signals

Posted by in categories: cosmology, particle physics

There is reason to believe that novel physics outside the standard model may be on the horizon.

When two neutron stars merge, a short-lived, hot, dense remnant is created. This residue provides an excellent environment for the synthesis of unusual particles. For a brief while, the remnant becomes far hotter than the individual stars before congealing into a larger neutron star or, depending on the original masses, a black hole.

Continue reading “Neutron star mergers: New physics signals” »

Mar 9, 2024

Advances in understanding bat infection dynamics across biological scales

Posted by in categories: biological, biotech/medical

Bats are an important group of mammals to understand the ecology, diversity, and transmission of associated microbes – including viruses, bacteria, and fungi.


Over the past two decades, research on bat-associated microbes such as viruses, bacteria and fungi has dramatically increased. Here, we synthesize themes from a conference symposium focused on advances in the research of bats and their microbes, including physiological, immunological, ecological and epidemiological research that has improved our understanding of bat infection dynamics at multiple biological scales. We first present metrics for measuring individual bat responses to infection and challenges associated with using these metrics. We next discuss infection dynamics within bat populations of the same species, before introducing complexities that arise in multi-species communities of bats, humans and/or livestock. Finally, we outline critical gaps and opportunities for future interdisciplinary work on topics involving bats and their microbes.

Studies of bat-associated microbes (i.e. microorganisms detected in or isolated from bats) date back to rabies virus investigations in the early 1900s [1]. In the past two decades, following the emergence of Severe Acute Respiratory Syndrome (SARS) coronavirus (CoV) in 2003 and SARS-CoV-2 in 2019, there has been a dramatic increase in research on bat-associated microbes, including viruses, bacteria, haemosporidians and fungi [2–5]. These microbes may or may not cause disease in bats, and thus we broadly use the term ‘microbes’ rather than ‘pathogens’ throughout this paper to acknowledge that detecting microorganisms in bats is distinct from the process of determining pathogenicity [6].

Mar 9, 2024

Nanotech and Molecular Advances in Fighting Inflammation and Diabetes

Posted by in categories: biotech/medical, nanotechnology

Emerging nanotechnology and molecular innovations present promising strategies in combating inflammation and diabetes, aiming to transform treatment methods and improve patient outcomes significantly.


The intersection of nanotechnology and biomedicine has sparked significant advances in the treatment and understanding of both inflammatory and metabolic diseases. These advances have brought about innovative solutions to longstanding medical challenges, such as rheumatoid arthritis (RA) and type 2 diabetes mellitus (T2DM), diseases that collectively affect millions worldwide.

Continue reading “Nanotech and Molecular Advances in Fighting Inflammation and Diabetes” »