Toggle light / dark theme

Quoted: “Sometimes decentralization makes sense.

Filament is a startup that is taking two of the most overhyped ideas in the tech community—the block chain and the Internet of things—and applying them to the most boring problems the world has ever seen. Gathering data from farms, mines, oil platforms and other remote or highly secure places.

The combination could prove to be a powerful one because monitoring remote assets like oil wells or mining equipment is expensive whether you are using people driving around to manually check gear or trying to use sensitive electronic equipment and a pricey a satellite internet connection.

Instead Filament has built a rugged sensor package that it calls a Tap, and technology network that is the real secret sauce of the operation that allows its sensors to conduct business even when they aren’t actually connected to the internet. The company has attracted an array of investors who have put $5 million into the company, a graduate of the Techstars program. Bullpen Capital led the round with Verizon Ventures, Crosslink Capital, Samsung Ventures, Digital Currency Group, Haystack, Working Lab Capital, Techstars and others participating.

To build its technology, Filament is using a series of protocols that include the blockchain transaction database behind Bitcoin; BitTorrent, the popular peer-to-peer file sharing software; Jose, a contract management protocol that is also used in the OAuth authentication service that lets people use their Facebook ID to log in and manage permissions to other sites around the web;TMesh, a long-range mesh networking technology andTelehash for private messaging.”

“This cluster of technologies is what enables the Taps to perform some pretty compelling stunts, such as send small amounts of data up to 9 miles between Taps and keep a contract inside a sensor for a year or so even if that sensor isn’t connected to the Internet. In practical terms, that might mean that the sensor in a field gathering soil data might share that data with other sensors in nearby fields belonging to other farmers based on permissions the soil sensor has to share that data. Or it could be something a bit more complicated like a robotic seed tilling machine sensing that it was low on seed and ordering up another bag from inventory based on a “contract” it has with the dispensing system inside a shed on the property.

The potential use cases are hugely varied, and the idea of using a decentralized infrastructure is fairly novel. Both IBM and Samsung have tested out using a variation of the blockchain technology for storing data in decentralized networks for connected devices. The idea is that sending all of that data to the cloud and storing it for a decade or so doesn’t always make economic sense, so why not let the transactions and accounting for them happen on the devices themselves?

That’s where the blockchain and these other protocols come in. The blockchain is a great way to store information about a transaction in a distributed manner, and because its built into the devices there’s no infrastructure to support for years on end. When combined with mesh radio technologies such as TMesh it also becomes a good way to build out a network of devices that can communicate with each other even when they don’t have connectivity.”

Read the Article, and watch the Video, here > http://fortune.com/2015/08/18/filament-blockchain-iot/

Synthetic biology is radical and has huge potential to revolutionize multiple industries. The fact is biology has already worked out efficient ways of doing things, or has in place mechanisms we can adapt, so why reinvent anything if we can simply adapt what’s already here? Using billions of years of evolution makes logical sense, and that’s what synthetic biology builds on.

So here is a great video by Grist, explaining what synthetic biology is and what we might be able to do with it in the future.

Read more

If you pry open one of today’s ubiquitous high-tech devices—whether a cellphone, a laptop, or an electric car—you’ll find that batteries take up most of the space inside. Indeed, the recent evolution of batteries has made it possible to pack ample power in small places.

But people still always want their devices to last even longer, or go further on a charge, so researchers work night and day to boost the power a given size can hold. Rare, but widely publicized, incidents of overheating or combustion in lithium-ion batteries have also highlighted the importance of safety in battery technology.

Now researchers at MIT and Samsung, and in California and Maryland, have developed a new approach to one of the three basic components of batteries, the . The new findings are based on the idea that a solid electrolyte, rather than the liquid used in today’s most common rechargeables, could greatly improve both device lifetime and safety—while providing a significant boost in the amount of power stored in a given space.

Read more

Possible cause of the singularity Boston Dynamics is secretive about upcoming projects, but new footage shows their robots in action—and the results are highly unsettling.

First you can see Spot, an agile autonomous quadruped ripped directly from Isaac Asimov’s nightmares, opening a door with the arm it sports instead of a face. Spot would almost be adorable the way it trots around on four legs except for the protruding face-arm that will turn the handle on your front door with its superstrength. Sleep well tonight.

Read more

August 17, 2015 Boston Dynamics, which Google bought in 2013, has begun testing one of its humanoid robots — those that are designed to function like humans — out in the wild. Marc Raibert, the founder of Boston Dynamics, talked about the research and showed footage of the project during a talk on Aug. 3 at the 11th Fab Lab Conference and Symposium in Cambridge, Mass.

“Out in the world is just a totally different challenge than in the lab,” Raibert said at the conference, which was organized by the Fab Foundation, a division of the Massachusetts Institute of Technology’s Center for Bits and Atoms. “You can’t predict what it’s going to be like.”

Boston Dynamics has tested its LS3 quadruped (four-legged) robot out in natural settings in the past. But humanoid robots are different — they can be much taller and have a higher center of gravity. Keeping them moving on paved asphalt is one thing, but maneuvering them through rugged terrain, which is what Boston Dynamics’ Atlas robots dealt with recently during the DARPA Robotics Challenge, can be trickier.

Read more