Toggle light / dark theme

You’ve probably seen a few attempts at recreating worlds in game engines, but never at this level of detail. Artist Jason B is working on the Enterprise-D Construction Project, an Unreal Engine-based virtual tour that aims to reproduce all 42 decks in the Enterprise from Star Trek: The Next Generation. While it’s not quite photorealistic, the attention to detail in this digital starship is already uncanny — the bridge, shuttle bay and other areas feel like lived-in spaces, just waiting for the crew to return. Jason is drawing on as much official material as he can to get things pixel-perfect, and he’s only taking creative liberties in those areas where there’s no canonical content.

The project is currently just a hobby, but there might be more in the cards if everything goes smoothly. Jason is considering populating the ship, offering a chance to explore the outsides of other locations (such as Deep Space Nine) and even introducing game mechanics. Whether or not those happen will depend on many things falling into place, however. The creator is thinking about crowdfunding campaigns to help with his work, and there’s the looming question of licensing: he’ll likely need CBS’ approval to release anything, especially if he wants to charge for it. Even if it amounts to little more than some screenshots and video, though, it’s an impressive feat.

Read more

You’ve gotta love Star Trek, but there is absolutely NO WAY I’d ever set foot in a real teleportation device! (if one ever really got made, of course) Call me crazy, but I’m kinda partial to keeping my molecular cohesion as intact as possible, which kinda rules out having it ripped apart and remade on the other side.


A record-breaking distance has been achieved in the bizarre world of quantum teleportation, scientists say.

The scientists teleported photons (packets of light) across a spool of fiber optics 63 miles (102 kilometers) long, four times farther than the previous record. This research could one day lead to a “quantum Internet” that offers next-generation encryption, the scientists said.

Teleporting an object from one point in the universe to another without it moving through the space in between may sound like science fiction pulled from an episode of “Star Trek,” but scientists have actually been experimenting with “quantum teleportation” since 1998. [Twisted Physics: 7 Mind-Blowing Findings].

Read more

Australian scientists have published an ‘instruction manual’ that makes it a whole lot easier and cheaper to create metallic glass — a type of flexible but ultra-tough alloy that’s been described as “the most significant materials science innovation since plastic”. The material is similar to the sci-fi liquid-type metal used to create the T-1000 in Terminator 2 - when it’s heated it’s as malleable as chewing gum, but when it cools it’s three times stronger than steel.

Researchers have been dabbling with the creation of metallic glass — or amorphous metal — for decades, and have made a range of different types by mixing metals such as magnesium, palladium, or copper — but only after an expensive and lengthy process of trial and error. Now, for the first time, Australian scientists have created a model of the atomic structure of metallic glass, and it will allow scientists to quickly and easily predict which metal combinations can form the unique material.

“Until now, discovering alloy compositions that form these materials has required a lengthy process of trial and error in the laboratory,” lead researcher Kevin Laws from the University of New South Wales (UNSW) said in a press release. “With our new instruction manual we can start to create many new useful metallic glass-types and begin to understand the atomic fundamentals behind their exceptional properties.”

Read more

By Dharmendra S. Modha, Ph. D., IBM Research

Building a computer that could match the power of the human brain has long been a goal of scientists.

In August, we made a breakthrough, published in Science in collaboration with Cornell Tech, which is a significant step toward bringing cognitive computers to society. We announced that we’ve built a computer chip that functions like a brain does with the ability to sense, taste, feel, smell, hear and understand its surroundings.

Read more

Imagine a “smart pill” that can sense problems in your intestines and actively release the appropriate drugs. We have the biological understanding to create such a device, but we’re still searching for electronic materials (like batteries and circuits) that pose no risk if they get stuck in our bodies. In Trends in Biotechnology on September 21, Christopher Bettinger of Carnegie Mellon University presents a vision for creating safe, consumable electronics, such as those powered by the charged ions within our digestive tracts.

Edible electronic medical devices are not a new idea. Since the 1970s, researchers have been asking people to swallow prototypes that measure temperature and other biomarkers. Currently, there are ingestible cameras for gastrointestinal surgeries as well as sensors attached to medications used to study how drugs are broken down in the body.

“The primary risk is the intrinsic toxicity of these materials, for example, if the battery gets mechanically lodged in the gastrointestinal tract–but that’s a known risk. In fact, there is very little unknown risk in these kinds of devices,” says Bettinger, a professor in materials science and engineering. “The breakfast you ate this morning is only in your GI tract for about 20 hours–all you need is a battery that can do its job for 20 hours and then, if anything happens, it can just degrade away.”

Read more