Toggle light / dark theme

ABSTRACT

The Mach Effect Thruster (MET) is a propellant―less space drive which uses Mach’s principle to produce thrust in an accelerating material which is undergoing mass―energy fluctuations, [1] –[3]. Mach’s principle is a statement that the inertia of a body is the result of the gravitational interaction of the body with the rest of the mass-energy in the universe. The MET device uses electric power of 100 — 200 Watts to operate. The thrust produced by these devices, at the present time, are small on the order of a few micro-Newtons. We give a physical description of the MET device and apparatus for measuring thrusts. Next we explain the basic theory behind the device which involves gravitation and advanced waves to incorporate instantaneous action at a distance. The advanced wave concept is a means to conserve momentum of the system with the universe. There is no momentun violation in this theory. We briefly review absorber theory by summarizing Dirac, Wheeler-Feynman and Hoyle-Narlikar (HN). We show how Woodward’s mass fluctuation formula can be derived from first principles using the HN-theory which is a fully Machian version of Einstein’s relativity. HN-theory reduces to Einstein’s field equations in the limit of smooth fluid distribution of matter and a simple coordinate transformation.

Keywords:

Mach Effect Drive, Transient Mass Fluctuations, Weak Field Limit Gravitation, Modified (PPN) Parameterized Post Newtonian Approximation, Linearized Einstein Equations, Gravitoelectromagnetism.

Read more

According to the Mayo Clinic, the Nerve regeneration is a complex process, because of its complexity, regrowth of nerves after injury or disease is extremely rare. Nerve damages more often than not are incurable and cause permanent disability, but now the scientist has proved that Advanced 3D printing methods could hold a possible cure for such patients.

To prove the proof of concept, a physically disabled rat was chosen as a test subject. The scientist used a specially designed 3D scanners and 3D Printers to create a custom silicone guide, 3D-printed chemical cues were added to the guide to promote both motor and sensory nerve regeneration. This was then implanted into the rat with surgically grafting it to the cut ends of the nerve. The operation was a extremely successful and the rat showed tremendous improvement in the way it walked within 10 to 12 weeks.

The Lead researcher of this medical breakthrough, Michael McAlpine, a mechanical engineering professor from the University of Minnesota said “This represents an important proof of concept of the 3D printing of custom nerve guides for the regeneration of complex nerve injuries,”

Read more

Interested in being an astronaut? NASA now hiring.


Have you ever dreamed of becoming an astronaut? Well, this could be your chance.

NASA revealed on Wednesday that it will begin accepting applications for the next class of astronaut candidates starting on Dec. 14.

The agency is seeking pilots, engineers, scientists and medical doctors, among others to continue work on the International Space Station and to conduct deep space exploration.

Read more

Facebook is now tackling a problem that has evaded computer scientists for decades: how to build software that can beat humans at Go, the 2,500-year-old strategy board game, according to a report today from Wired. Because of Go’s structure — you place black or white stones at the intersection of lines on a 19-by-19 grid — the game has more possible permutations than chess, despite its simple ruleset. The number of possible arrangements makes it difficult to design systems that can look far enough into the future to adequately assess a good play in the way humans can.

“We’re pretty sure the best [human] players end up looking at visual patterns, looking at the visuals of the board to help them understand what are good and bad configurations in an intuitive way,” Facebook chief technology officer Mike Schroepfer said. “So, we’ve taken some of the basics of game-playing AI and attached a visual system to it, so that we’re using the patterns on the board—a visual recognition] system—to tune the possible moves the system can make.”

The project is part of Facebook’s broader efforts in so-called deep learning. That subfield of artificial intelligence is founded on the idea that replicating the way the human brain works can unlock statistical and probabilistic capabilities far beyond the capacity of modern-day computers. Facebook wants to advance its deep learning techniques for wide-ranging uses within its social network. For instance, Facebook is building a version of its website for the visually impaired that will use natural language processing to take audio input from users — “what object is the person in the photo holding?” — analyze it, and respond with relevant information. Facebook’s virtual assistant, M, will also come to rely on this type of technology to analyze and learn from users’ requests and respond in a way only humans could.

Read more