Toggle light / dark theme

Algolux is a company aiming to tackle blurring problems through computational optics. Algolux said its efforts are presently focused on smartphones and tablets. One can appreciate how this company sees their technology attracting interest in this way. The technology allows for lens designs to be less complex, smaller, lighter and cheaper which would be especially interesting in smartphone imaging where space is at a premium, said Connect, a website on mobile photography technology. The company tells site visitors that “Our computational optics enable better pictures, thinner cameras and cheaper optics.” The technology allows manufacturers’ devices to capture clearer pictures with their existing equipment, including in low-light conditions. Also, the quantity and quality of optical elements needed are diminished; manufacturers can obtain desirable results at a lower cost.

Traditional optics have hit a wall, according to the company. Their size can no longer be reduced significantly for cameras inside thin devices such as smartphones and tablets.”Lenses in smart devices are small and plastic (for the most part), and do not have the quality of a full-sized optical system, especially for low-light and night-time pictures. As sensors and pixels get smaller, the probability of blur and other aberrations in pictures increases.”

Algolux Virtual Lens corrects through software, for sharper photos. Algolux Virtual IS corrects motion blur and shutter shake, which may be experienced in low light conditions. Virtual Lens takes care of image quality while Virtual IS software takes care of image stabilization. All in all, the company has software and computational imaging techniques that correct for blurring, distortion and other aberrations.

Read more

The U.S. military doesn’t just build big, scary tanks and giant warplanes; it’s also interested in teeny, tiny stuff. The Pentagon’s latest research project aims to improve today’s technologies by shrinking them down to microscopic size.

The recently launched Atoms to Product (A2P) program aims to develop atom-size materials to build state-of-the-art military and consumer products. These tiny manufacturing methods would work at scales 100,000 times smaller than those currently being used to build new technologies, according to the Defense Advanced Research Projects Agency, or DARPA.

The tiny, high-tech materials of the future could be used to build things like hummingbird-size drones and super-accurate (and super-small) atomic clocks — two projects already spearheaded by DARPA. [Humanoid Robots to Flying Cars: 10 Coolest DARPA Projects].

Read more

(Phys.org) —Scientists at the University of Bristol have developed a process where reagents are added to a growing carbon chain with extraordinary high fidelity and precise orientation, thereby controlling the conformation of the molecule so that it adopts a helical or linear shape. The process can be likened to a molecular assembly line.

Nature has evolved highly sophisticated machinery for . One of the most beautiful examples is its machinery for the synthesis of polyketides, a very important class of molecules due to their broad spectrum of biological activities (for example antibiotic, antitumor, antifungal, antiparasitic).

In this process, a simple thioester (small building block) is passed from one enzyme domain to another, growing as it does so until the is formed. The process resembles a molecular assembly line.

Read more

When vendors send out announcements of long battery life and juicing strategies for electronic gadgets, interest is assured; the bad news is that interest is assured because consumers are still eagerly looking for less bother and less time needed to keep their smartphones and other mobile gadgets up and running. Intel is aware of the challenge, what with wearables on tap in an assortment of form factors. To be sure, Intel would like to be in the frontlines of technology giants providing the buying public with finer solutions.

“What’s New with Wireless Charging?” Intel asked in July. Intel’s answer, “If you’ve been keeping up with trade shows and tech blogs, you might think that some new breakthrough in wireless energy transfer has taken place in the past year. It hasn’t.” Nikola Tesla worked on before the turn of the 20th century; his inductive charging techniques would see a renaissance some five decades after his death in 1943, said Intel. That has not stopped technologists, however, from asking what comes next. Today, said Intel, the idea and the technology is gaining momentum.

This week’s news headlines of Intel saying its charging bowl will be available by the end of this year will no doubt interest readers and will please those who saw the bowl earlier this year at the Consumer Electronics show, and kept sending e-mails to Intel asking when it will be ready. Earlier this year, it was clear that Intel was working on a day not too distant in the future when people in PC environments could enjoy docking and charging activities as a wire-free experience. Intel revealed at the Computex trade show in Taipei, via an Intel demonstration by Kirk Skaugen, Intel’s senior vice president and general manager of the PC Client Group, that the chipmaker was in fact working on wireless technologies to help deliver a new normal. Skaugen demonstrated how wireless technology could be integrated into a table that could simultaneously charge a laptop, phone, headset and tablet. In January, the company had really whetted appetites for changes in showing a wireless charging bowl at CES. The bowl looks like the standard bowl one might place on a table at home to hold keys, loose coins, or other items.

Read more

A team of scientists from Lund University in Sweden has figured out how to turn a single molecule into a microphone by making it capable of detecting the vibrations produced by sound waves.

This minuscule microphone works by embedding a single molecule of a substance called dibenzoterrylene (DBT) in a tiny crystal of a hydrocarbon material called anthracene. When the crystal is exposed to sound waves, the DBT molecule is disturbed by the vibrations, and it vibrates in response.

“This movement changes the interaction between the electron clouds of DBT and anthracene, which ultimately result in a slight shift in DBT’s fluorescence,” explains Sarah Zhang at Gizmodo. “By tracking the fluorescence of just a single molecule of DBT, the scientists could track the frequency of the sound.”

Read more

Aubrey de Grey wants to save lives. He wants to save as many as he possibly can, as soon as he can, and to do it he is going to fix ageing.

The prominent scientist and futurologist is on a crusade to beat ageing and when he does it will mean that we stay healthy and live longer – possibly for up to hundreds of years.

But, as de Grey emphasises, his primary goal is not just making people live longer; he wants us to live healthily, he wants to restore us to a state of health that is “fully functional in every way”. The ability to live for hundreds of years is just a side effect.

Read more

Shawn Frayne and Alex Hornstein, two young inventors based in the Philippines, are taking their passion for clean free energy and developing a way to make it accessible and cheap for everyone. These guys are working restlessly to provide a product that could be used by practically anyone to make homemade solar panels.

The factory is small enough to fit on a desktop and efficient enough to produce 300k to one million panels per year, up to one every 15 seconds. By cutting out much of the labor intensive process, which represents 50% of the total cost, this machine can dramatically reduce the price of solar. Their pocket solar panel producer can change the way the world views electricity. Image credit: YouTube/SciFri

What type of applications can a homemade solar panel have? For starters it can replace the need for outlets in a home for smaller electronics such as phones, computers, lamps, etc. One of the more intriguing applications is the added versatility solar panels can provide. In short, with these panels you can use your electronics anywhere there’s sunshine.

Read more