Toggle light / dark theme

Get the latest international news and world events from around the world.

Log in for authorized contributors

Scattered Spider Resurfaces With Financial Sector Attacks Despite Retirement Claims

Cybersecurity researchers have tied a fresh round of cyber attacks targeting financial services to the notorious cybercrime group known as Scattered Spider, casting doubt on their claims of going “dark.”

Threat intelligence firm ReliaQuest said it has observed indications that the threat actor has shifted their focus to the financial sector. This is supported by an increase in lookalike domains potentially linked to the group that are geared towards the industry vertical, as well as a recently identified targeted intrusion against an unnamed U.S. banking organization.

“Scattered Spider gained initial access by socially engineering an executive’s account and resetting their password via Azure Active Directory Self-Service Password Management,” the company said.

Bayes’ Rule Goes Quantum: A 250-Year-Old Theory Learns New Tricks

An international team of researchers has identified a quantum counterpart to Bayes’ rule. The likelihood you assign to an event is influenced by what you already believe about the surrounding conditions. This is the basic principle of Bayes’ rule, a method for calculating probabilities first intr

New Method Proposed To Detect Universe’s Mysterious “Phantom Heat” Predicted by Einstein

The findings resolve a long-standing problem in fundamental physics. Scientists at Hiroshima University have created a practical and highly sensitive method for detecting the Unruh effect, a long-anticipated phenomenon that lies at the intersection of relativity and quantum theory. This new strat

Scientists Discover Ordinary Ice Has Extraordinary Electrical Properties

Ice can generate electricity when bent, a process called flexoelectricity. The discovery connects to lightning formation and future device applications. Ice is among the most common materials on Earth, covering glaciers, mountain ranges, and the polar regions. Despite its familiarity, ongoing res

Are Five Senses Holding Us Back? Scientists Say We Could Use Seven

A mathematical model shows memory capacity is maximized when represented by seven features. The study links this to the potential for seven senses, with applications in AI and neuroscience. Skoltech researchers have developed a mathematical model to study how memory works. Their analysis led to u

Shocked quartz at the Younger Dryas onset (12.8 ka) supports cosmic airbursts/impacts contributing to North American megafaunal extinctions and collapse of the Clovis technocomplex

Shocked quartz grains are an accepted indicator of crater-forming cosmic impact events, which also typically produce amorphous silica along the fractures. Furthermore, previous research has shown that shocked quartz can form when nuclear detonations, asteroids, and comets produce near-surface or “touch-down” airbursts. When cosmic airbursts detonate with enough energy and at sufficiently low altitude, the resultant relatively small, high-velocity fragments may strike Earth’s surface with high enough pressures to generate thermal and mechanical shock that can fracture quartz grains and introduce molten silica into the fractures. Here, we report the discovery of shocked quartz grains in a layer dating to the Younger Dryas (YD) onset (12.8 ka) in three classic archaeological sequences in the Southwestern United States: Murray Springs, Arizona; Blackwater Draw, New Mexico; and Arlington Canyon, California. These sites were foundational in demonstrating that the extinction or observed population bottlenecks of many megafaunal species and the coeval collapse/reorganization of the Clovis technocomplex in North America co-occurred at or near the YD onset. Using a comprehensive suite of 10 analytical techniques, including electron microscopy (TEM, SEM, CL, and EBSD), we have identified grains with glass-filled fractures similar to shocked grains associated with nuclear explosions and 27 accepted impact craters of different ages (e.g., Meteor Crater, 50 ka; Chesapeake Bay, 35 Ma; Chicxulub, 66 Ma; Manicouagan, 214 Ma) and produced in 11 laboratory shock experiments. In addition, we used hydrocode modeling to explore the temperatures, pressures, and shockwave velocities associated with the airburst of a 100-m fragment of a comet and conclude that they are sufficient to produce shocked quartz. These shocked grains co-occur with previously reported peak concentrations in platinum, meltglass, soot, and nanodiamonds, along with microspherules, similar to those found in ~28 microspherule layers that are accepted as evidence for cosmic impact events, even in the absence of a known crater. The discovery of apparently thermally-altered shocked quartz grains at these three key archaeological sites supports a cosmic impact as a major contributing factor in the megafaunal extinctions and the collapse of the Clovis technocomplex at the YD onset.

Citation: Kennett JP, LeCompte MA, Moore CR, Kletetschka G, Johnson JR, Wolbach WS, et al. (2025)PLoS One 20: e0319840. https://doi.org/10.1371/journal.pone.

Editor: Talaat Abdel Hamid, National Research Centre, EGYPT

/* */