Toggle light / dark theme

Get the latest international news and world events from around the world.

Log in for authorized contributors

Chinese medicine extract tetrandrine’s precise mechanism of action opens new avenues for drug discovery

With this discovery, the researchers propose that tetrandrine can be used to disrupt processes critical to the survival and replication of viruses, such as Ebola and COVID-19, by targeting LIMP-2 to alter lysosomal calcium release.

Importantly, these findings highlight lysosome-related mechanisms as a new frontier for , offering novel strategies for treating diseases caused by calcium imbalance, including neurodegenerative disorders like Alzheimer’s and Parkinson’s, as well as certain metastatic cancers.

Prof. Ko said, “This is the first time a function of LIMP-2 in calcium signaling has been uncovered. From a cell biology perspective, our study has revealed a completely new pathway for NAADP-regulated calcium signaling, through LIMP-2 and sphingosine. From an anti-viral treatment perspective, the study has identified LIMP-2 as a key target of tetrandrine for the treatment of Ebola virus infection, with broader applications in other antiviral therapies.”

Children of parents with mental disorders may face higher risk of early death

Research led by the Karolinska Institutet reports that offspring of parents with mental disorders face increased mortality, with the highest risks for unnatural deaths and when both parents had diagnoses.

Parental mental disorders have been linked to and to multiple developmental, mental, and somatic outcomes, while links with long-term offspring mortality remained unclear.

In the study, “Parental Mental Disorders and Offspring Mortality up to Middle Age,” published in JAMA Psychiatry, researchers conducted a nationwide register-based cohort study to investigate associations between parental mental disorders and mortality in offspring up to .

Algorithm reveals ‘magic sizes’ for assembling programmable icosahedral shells at minimal cost

Over the past decade, experts in the field of nanotechnology and materials science have been trying to devise architectures composed of small structures that spontaneously arrange themselves following specific patterns. Some of these architectures are based on so-called icosahedral shells, structures with 20 different triangular phases that are symmetrically organized.

New haptic system lets soft objects respond to taps, squeezes and twists

New technology that invites expressive, two-way communication between a person and the soft, flexible object they are holding or wearing has been developed at the University of Bath.

Using this system, a user can tap, twist or pinch a soft object—such as a cushion, an item of clothing or a pliable computer mouse—and the object will respond in a meaningful way, for instance, by changing the TV channel, turning off a light or creating a digital sculpture on a screen.

Crucially, the object also provides (such as a soft click or vibration) to confirm the action, while maintaining its natural softness and flexibility.

Enhancing the industrial relevance of alcohol dehydrogenase enzymes by exploiting their ‘hidden reactivity’

Amides and thioesters are ubiquitous compounds in chemistry, used for the production of medicines, natural products, and advanced materials. Traditionally, their synthesis is a messy business, involving wasteful reagents, toxic metals, or energy-intensive conditions.

Researchers discover a hidden atomic order that persists in metals even after extreme processing

For decades, it’s been known that subtle chemical patterns exist in metal alloys, but researchers thought they were too minor to matter—or that they got erased during manufacturing. However, recent studies have shown that in laboratory settings, these patterns can change a metal’s properties, including its mechanical strength, durability, heat capacity, radiation tolerance, and more.

Now, researchers at MIT have found that these chemical patterns also exist in conventionally manufactured metals. The surprising finding revealed a new physical phenomenon that explains the persistent patterns.

In a paper published in Nature Communications today, the researchers describe how they tracked the patterns and discovered the physics that explains them. The authors also developed a simple model to predict chemical patterns in metals, and they show how engineers could use the model to tune the effect of such patterns on metallic properties, for use in aerospace, semiconductors, nuclear reactors, and more.

Research shines light on ‘double-yielding’ behavior in soft materials

For decades, scientists have observed, but been unable to explain, a phenomenon seen in some soft materials: When force is applied, these materials exhibit not one, but two spikes in energy dissipation, known as overshoots. Because overshoots are generally thought to indicate the point at which a material yields, or transitions from solid-like to fluid-like behavior, the dual response was therefore assumed to indicate “double yielding”—the idea that to fully fluidize a material, it needed to yield twice.

Now, researchers at the University of Illinois Urbana-Champaign have shown that this behavior is different than previously hypothesized. Their paper, “Resolving Dual Processes in Complex Oscillatory Yielding,” is published in Physical Review Letters.

In the study, chemical and biomolecular engineering professor Simon A. Rogers and his team, led by then-graduate student James J. Griebler show that the two-step response is the result of two independent processes: first, a softening of the material’s elastic structure, and later, true yielding.

/* */