Toggle light / dark theme

Why send a message back in time, but lock it so that no one can ever read the contents? Because it may be the key to solving currently intractable problems. That’s the claim of an international collaboration who have just published a paper in npj Quantum Information.

It turns out that an unopened message can be exceedingly useful. This is true if the experimenter entangles the message with some other system in the laboratory before sending it. Entanglement, a strange effect only possible in the realm of , creates correlations between the time-travelling message and the laboratory system. These correlations can fuel a quantum computation.

Around ten years ago researcher Dave Bacon, now at Google, showed that a time-travelling quantum computer could quickly solve a group of problems, known as NP-complete, which mathematicians have lumped together as being hard.

Read more

On Thursday, the Max Planck Institute for Plasma Physics fired up a monster machine that it hopes will change the world.

The machine is called the Wendelstein 7-X, or W7-X for short. It’s a type of nuclear-fusion machine called a stellarator and is the largest, most sophisticated of its kind.

Nuclear fusion could prove to be a clean, inexhaustible energy source. But humans are still a ways from successfully building a reactor that could power a small town, let alone entire cities. But now, we’re one step closer.

Read more

For decades, engineers have designed computer systems with processors and memory chips laid out like single-story structures in a suburb. Wires connect these chips like streets, carrying digital traffic between the processors that compute data and the memory chips that store it.

But suburban-style layouts create long commutes and regular traffic jams in electronic circuits, wasting time and energy.

That is why researchers from three other universities are working with Stanford engineers, including Associate Professor Subhasish Mitra and Professor H.-S. Philip Wong, to create a revolutionary new high-rise architecture for computing.

Read more