Menu

Blog

Page 11972

Oct 30, 2015

Study finds new way of computing with interaction-dependent state change of nanomagnets

Posted by in categories: computing, engineering, nanotechnology

Researchers from the University of South Florida College of Engineering have proposed a new form of computing that uses circular nanomagnets to solve quadratic optimization problems orders of magnitude faster than that of a conventional computer.

A wide range of application domains can be potentially accelerated through this research such as finding patterns in social media, error-correcting codes to Big Data and biosciences.

In an article published in the current issue of Nature Nanotechnology, “Non Boolean computing with nanomagnets for computer vision applications,” authors Sanjukta Bhanja, D.K. Karunaratne, Ravi Panchumarthy, Srinath Rajaram, and Sudeep Sarkar discuss how their work harnessed the energy-minimization nature of nanomagnetic systems to solve the quadratic optimization problems that arise in computer vision applications, which are computationally expensive.

Read more

Oct 30, 2015

Physicists mimic quantum entanglement with laser pointer to double data speeds

Posted by in categories: information science, quantum physics

In a classic eureka moment, a team of physicists led by The City College of New York and including Herriot-Watt University and Corning Incorporated is showing how beams from ordinary laser pointers mimic quantum entanglement with the potential of doubling the data speed of laser communication.

Quantum entanglement is a phrase more likely to be heard on popular sci-fi television shows such as “Fringe” and “Doctor Who.” Described by Albert Einstein as “spooky action at a distance,” when two quantum things are entangled, if one is ‘touched’ the other will ‘feel it,’ even if separated by a great distance.

“At the heart of quantum entanglement is ‘nonseparability’ — two entangled things are described by an unfactorizable equation,” said City College PhD student Giovanni Milione. “Interestingly, a conventional (a pointer)’s shape and polarization can also be nonseparable.”

Read more

Oct 30, 2015

Project Loon is set to circle the planet with Internet balloons in 2016

Posted by in category: internet

Google’s Project Loon is a massively ambitious plan to provide Internet connectivity to areas of the planet that don’t already enjoy good access to the web. How? Via a huge fleet of helium balloons that hang in the stratosphere 20 kilometres above the surface, assembling to form a high-tech communication network that beams the web to the surface.

And the undertaking is only getting more ambitious, with the company announcing this week that it plans to circle the planet with a ring of Project Loon balloons that will provide a perpetual data service for those living underneath its path.

It sounds like science fiction, but this isn’t some faraway ethereal concept we’re talking about. Google says it will do this next year, provided current tests work out as planned.

Read more

Oct 30, 2015

Bitcoin is 100 times More Powerful than Google

Posted by in categories: bitcoin, computing

Allow me to introduce you to someone who has the potential to be very important in the future of Bitcoin. His name is Balaji Srinivasan, and he is the chairman and co-founder of 21 Inc. What is 21 Inc? 21 Inc. is the Bitcoin startup that secured the most venture capital of any Bitcoin company in history, at $116 million. What do they need $116 million in venture capital for? They are investing in “future proprietary products designed to drive mainstream adoption of Bitcoin.” With that in mind, the research of 21 Inc. has highlighted some interesting Bitcoin factoids. One Srinivasan released at the second annual Bitcoin Job Fair held last weekend in Sunnyvale, California regarding how big Bitcoin has become in the computing world.

Honestly, I looked online to find out what a petahash rate and a gigahash rate was, and that is one long rabbit hole, so I’ll leave the technical ramble to techies like Mr. Srinivasan. He makes the comparison to Google based on the fair assumption that they are using 1e7 servers, for 1e7 H/s per Xeon, and ~10 Xeons/server = 1 PH/s. One petahash equals 1,000,000 gigahash or 1000 terahashes. Bitcoin reached 1 PH/s of computing power/speed on September 15th, 2013. It is now normally working at over 350 PH/s, or over 350,000,000 GH/s.

” All of Google today would represent less than 1% of all of mining (Bitcoin operations worldwide). The sheer degree of what is happening in (Bitcoin) mining is not being appreciated by the press,” said Balaji Srinivasan at the Bitcoin Job Fair. “If we assume there are 10 million Google servers, and each of these servers is running, you can multiply that through and get one petahash. If they turned off all of their data centers and pointed them at Bitcoin (mining network), they would be less than 1% of the network.”

Read more

Oct 30, 2015

Cellphone Microscope, UCLA

Posted by in categories: biotech/medical, health, mobile phones

Aydogan Ozcan is a Professor of Electrical Engineering at UCLA’s California NanoSystems Institute. Follow him around UCLA’s campus as he discusses wireless health and demonstrates detecting malaria, tuberculosis, and other diseases with a cell phone!

Read more

Oct 30, 2015

Engineers reveal record-setting flexible phototransistor

Posted by in category: computing

Inspired by mammals’ eyes, University of Wisconsin-Madison electrical engineers have created the fastest, most responsive flexible silicon phototransistor ever made.

Read more

Oct 30, 2015

Germany is about to start up a monster machine that could revolutionize the way we use energy

Posted by in categories: nuclear energy, physics, singularity

This is the energy source that will power the Singularity.

And everything else, too.

Continue reading “Germany is about to start up a monster machine that could revolutionize the way we use energy” »

Oct 30, 2015

A Possible Way to Cure Baldness

Posted by in category: biotech/medical

Meanwhile there is something important going on in the fight against baldness.

As in the majority of tissues, the hair follicle has stem cells. There are two types of stem cells that are responsible for the continuous renewal of the follicles. The first type is called active stem cells and they start dividing quite easily. Stem cells of the second type are called quiescent and in case of the new hair growth they don’t start dividing as easily. At the same time, the new hair is based primarily on quiescent cells, which attracted close attention of researchers to these cells. At first people thought that baldness was due to this type of cells.

However, recent studies showed that bald men did have those quiescent cells in their follicles. The problem was that they didn’t divide at all and didn’t contribute to forming new hairs.

Continue reading “A Possible Way to Cure Baldness” »

Oct 30, 2015

Attosecond physics: Film in 4-D with ultrashort electron pulses

Posted by in categories: nanotechnology, physics

Abstract: Physicists of the Ludwig-Maximilians-Universität (LMU) in Munich shorten electron pulses down to 30 femtoseconds duration. This enables them to gain detailed insight into atomic motions in molecules.

Read more

Oct 30, 2015

FDA approves cancer-killing cold sore virus as therapy for late-stage melanoma

Posted by in category: biotech/medical

The U.S. Food and Drug Administration announced on Oct. 27 that it has approved, for the first time, an oncolytic (cancer-killing) viral therapy in the United States. The drug was approved for use against late-stage melanoma, a deadly skin cancer that can be difficult to treat.

The approval came as the result of a recent Phase III study, which showed that more patients with late-stage melanoma, treated with a herpes cold sore virus designed to kill , had a better response when compared to a different treatment. Robert Andtbacka, M.D., from Huntsman Cancer Institute at the University of Utah and Howard L. Kaufman, M.D., from Rutgers Cancer Institute of New Jersey, led the multisite study, published May 26 online in the Journal of Clinical Oncology.

According to Andtbacka, “The goal of this targeted therapy is to treat late stage patients more effectively and with fewer side effects.”

Read more