Toggle light / dark theme

Anyone offended by the prospect of drinking fine whiskey inside sealed space packs with straws after Suntory sent its finest variety to the ISS for testing? Don’t worry: Ballantine’s got your back. The liquor company has commissioned Open Space Agency’s James Parr — who also created a Lumia-powered 3D-printed telescope in the past — to design a high-tech whiskey glass especially for zero-G environments. He tested a number of designs before settling on a rounded glass with a spiral convex stainless steel base plated in rose gold that can create the surface tension necessary to hold the liquor down. The liquid then passes through channels on the sides of the glass all the way up to the golden mouthpiece.

The “glass” part itself is actually 3D-printed medical-grade PLA plastic, the same kind used for heart valves. Since everything tends to float in microgravity, the base hides a 22-pound magnet that can be used to stick the glass on magnetic surfaces. Plus, it has a one way valve where a customized whiskey bottle nozzle can be inserted to pour out a shot. Parr and Ballantine published more details about the design process on Medium, if you’d like to read more about how the “space glass” was created. Sure, it could be nothing but a marketing stunt, but it’s amazing how much thought went into designing a whiskey glass. It’s unfortunate that most of us might never get to use it in its intended environment; good thing the final product at least looks fancy enough to display.

Read more

Anyone paying attention to all of the news about autonomous vehicles from Google and other companies may have noticed a common thread in the stories, photos and videos. The roads are always dry and the sun is shining. That’s because many of the sensors used to let a car manage its own trajectory don’t work well unless they can see the road and other surroundings clearly. Ford is now claiming to be the first automaker to test its prototype autonomous vehicles in winter weather conditions.

After becoming the first automaker to use the Mcity test facility in Ann Arbor, Mich. for autonomous vehicle tests last fall, the Dearborn automaker continued its development work into December when the snow started to fly.

Read more

Competition for scarce electromagnetic (EM) spectrum is increasing, driven by a growing military and civilian demand for connected devices. As the spectrum becomes more congested, the Department of Defense (DoD) will need better tools for managing the EM environment and for avoiding interference from competing signals. One recent DARPA-funded advance, an exceptionally high-speed analog-to-digital converter (ADC), represents a major step forward. The ADC could help ensure the uninterrupted operation of spectrum-dependent military capabilities, including communications and radar, in contested EM environments. The advance was enabled by 32 nm silicon-on-insulator (SOI) semiconductor technologies available through DARPA’s ongoing partnership with GlobalFoundries, a manufacturer of highly-advanced semiconductor chips.

The EM spectrum, whose component energy waves include trillionth-of-a-meter-wavelength gamma rays to multi-kilometer-wavelength radio waves, is an inherently physical phenomenon. ADCs convert physical data—that is, analog data—on the spectrum into numbers that a digital computer can analyze and manipulate, an important capability for understanding and adapting to dynamic EM environments.

Today’s ADCs, however, only process data within a limited portion of the spectrum at a given time. As a result, they can temporarily overlook critical information about radar, jamming, communications, and other potentially problematic EM signals. DARPA’s Arrays at Commercial Timescales (ACT) program addressed this challenge by supporting the development of an ADC with a processing speed nearly ten times that of commercially available, state-of-the-art alternatives. By leveraging this increased speed, the resulting ADC can analyze data from across a much wider spectrum range, allowing DoD systems to better operate in congested spectrum bands and to more rapidly react to spectrum-based threats.

Read more

Early detection by Grail (leveraging illumina’s gene sequencing technology) looks promising. This truly will be beneficial for early detection. And, I will be very interested in seeing how it benefits those who are genetically pre-disposed to cancer related gene mutations especially around Esaphogus, Glioblastoma, and Pancreatic cancers since these are often hard to detect in their earliest stages.

Read more

And, no one should say “Never” when it comes to people replaced by robots in the military.

Not good for the Russian military people.


Science fiction movies are quickly becoming a reality on the modern battlefield, as robots gradually supplant people in certain aspects of Russian military operations. The full automation of the armed forces using artificial intelligence is still a long way off, but some key functions once entrusted only to humans have already been passed on to machines.

Read more