Toggle light / dark theme

Davos: The True Fear Around Robots — Autonomous weapons, which are currently being developed by the US, UK, China, Israel, South Korea and Russia, will be capable of identifying targets, adjusting their behavior in response to that target, and ultimately firing — all without human intervention.


The issue of ‘killer robots’ one day posing a threat to humans has been discussed at the annual World Economic Forum meeting in Davos, Switzerland.

The discussion took place on 21 January during a panel organised by the Campaign to Stop Killer Robots (CSKR) and Time magazine, which asked the question: “What if robots go to war?”

Participants in the discussion included former UN disarmament chief Angela Kane, BAE Systems chair Sir Roger Carr, artificial intelligence (AI) expert Stuart Russell and robot ethics expert Alan Winfield.

Read more

Our economy will be severely impacted as millions of lorry drivers, cabbies and delivery people are put out of work. In this era of endless innovation, humanity’s century-long relationship with the automobile is about to be permanently disrupted. The reason has nothing to do with millennials, Uber or improvements in mass transport. Driving should and will be made illegal because we now have the technology to prevent deadly traffic accidents, one of the greatest causes of premature deaths.

More than 1.2 million people are killed in car accidents each year. Last year, more than 275,000 Chinese, 238,000 Indians and 36,000 Americans died in preventable traffic accidents. Since Ralph Nader first took on the car industry by publishing Unsafe at Any Speed in 1965, auto-mobile manufacturers have radically improved the safety and reliability of their vehicles. Seatbelts, airbags, anti-lock brakes, as well as tyre-pressure-monitoring, have all reduced traffic deaths. But, until now, makers were unable to deal with the single biggest cause of fatalities: human error. We now have the technology to save millions of lives, but does society have the willpower to mandate its use?

Google’s autonomous vehicles have logged 1.5 million kilometres on roads dominated by human-driven cars. Subjected to the same real-world conditions as us mere mortals, self-driving cars have been through rain, sleet and snow. These vehicles have driven the equivalent of circumnavigating the globe 40 times, without incident. In July, Google reported 14 minor road accidents in total — but in all of the cases blamed human error. According to the data, human-driver error is responsible for 94 per cent of all crashes.

Read more

Researchers at the University of Colorado have created a unique, light-activated nanotherapy to destroy antibiotic resistant bacteria

The pursuit of longevity requires continued, effective antibiotics. Otherwise, you could be as fit as a fiddle at 100 and still be downed by a nasty, resistant strain.

While bacterial strains resistant to current drugs are rapidly rising across the globe, infecting 2 million people last year, researchers are turning to increasingly innovative ways to destroy these populations. Nanotechnology is one such, increasingly promising technology.

Read more

Space is not a government program; it’s the rest of the Universe. Private space business is now a major factor, bent on finding investors interested in generating profits by making space more accessible to more people. Space business pays taxes to governments; it does not consume tax revenues. Further, space business can offer launch services to government agencies at highly competitive rates, thus saving taxpayer dollars. How can they do this, competing with government-funded boosters with a 50-year track record? Simple: governments have no incentive to cut costs. Traditional aerospace industry giants have a huge vested interest in boosters that were developed to military and NASA standards, among which economy was not even an issue. But innovative, competitive companies such as XCOR Aerospace and Mojave Aerospace, without such baggage (and overhead) can drive costs down dramatically. This is a proven principle: notice that we are no longer buying IBM PCs with 64 k of RAM for $5000 a unit.

Even more important in the long view, space is a literally astronomical reservoir of material and energy resources. The profit potential of even a single such resource, such as solar power collectors in space beaming microwave power to Earth, is in the trillions of dollars. What would it be worth to the world to reduce fossil fuel consumption by a factor of 20 or 100 while lowering energy costs? Can we afford to continue pretending that Earth is a closed system, doomed to eke out finite resources into a cold, dark future?

Can we afford space? Wrong question. Can businesses afford space? Yes. We get to reap the benefits of their innovative ideas and free competition without footing the bill.

Read more

Further progress with telomeres by Maria Blasco which clearly demonstrates the link between telomeres and aging and why they are a primary “clock”.

“These findings suggest that it is the ability of different species to maintain telomeres rather than average telomere length per se that may be determinant of species longevity”

So if we maintain telomeres (either directly or by repairing the cause of that damage) as many biologically immortal creatures do could we expect to see life extension? So far in animals tested that answer is yes! Its not the only thing that needs to be addressed to combat aging but it looks like an important one.


Read the latest article version by Christian Bär, Maria A. Blasco, at F1000Research.

“Should science and society welcome ‘the singularity’ – the idea of the hypothetical moment in time when artificial intelligence surpasses human intelligence?

Panelists: Harry Shum (Microsoft Research EVP of Tech), Max Tegmark (Cosmologist, MIT) Stuart Russell (Prof. of Computer Science, UC Berkeley) and Ray Kurzweil (Futurist, Google Director of Engineering). Moderator: Margaret Boden (Prof. of Cognitive Science, Uni. of Sussex).”

More insights for AI research.


The complex multi-stage architecture of cortical visual pathways provides the neural basis for efficient visual object recognition in humans. However, the stage-wise computations therein remain poorly understood. Here, we compared temporal (magnetoencephalography) and spatial (functional MRI) visual brain representations with representations in an artificial deep neural network (DNN) tuned to the statistics of real-world visual recognition. We showed that the DNN captured the stages of human visual processing in both time and space from early visual areas towards the dorsal and ventral streams. Further investigation of crucial DNN parameters revealed that while model architecture was important, training on real-world categorization was necessary to enforce spatio-temporal hierarchical relationships with the brain. Together our results provide an algorithmically informed view on the spatio-temporal dynamics of visual object recognition in the human visual brain.

Read more

Creative way to treat Cataracts.


What affects 20 million people, robs the global economy of billions of dollars and can be fixed with a five-minute procedure?

The answer is cataract blindness. The disease, which begins with clouding of the eyes and can lead to loss of vision without treatment, will probably afflict 12 million more people by 2020, as a shortage of skilled doctors limits access to care in developing nations, according to the Rand Corporation.

Jim Ueltschi wants to change that. Through his nonprofit HelpMeSee, he wants to train 30,000 people for a procedure to remove the impairment using a virtual-reality simulator that replicates the human eye and feel of live surgery. Restoring vision to the “avoidably blind,” as the afflicted are often described, could inject $517 billion into the world’s poor economies over a decade at a cost of $128 billion, according to reports by PricewaterhouseCoopers commissioned by the Fred Hollows Foundation.

Read more

Cannot wait for the new AR contacts.


NEW YORK, Jan. 21, 2016 /PRNewswire/ — This new IDTechEx report is focused on how the market for smart glasses and contact lenses is going to evolve in the next decade, based on the exciting research and developments efforts of recent years along with the high visibility some projects and collaborations have enjoyed. The amount of visibility this space is experiencing is exciting developers of a range of allied technologies into fast-tracking/focusing their efforts, as well as creating devices and components designed specifically to serve this emerging industry.

Some of the newest devices that have ignited significant interest in smart eyewear are going above and beyond the conventional definition of a smart object; they are in effect, portable, wearable computers with a host of functionalities, specially designed apps etc. that add new ways for the wearer to interact with the world along with smartphone capabilities, health tracking options and many other features. The features of some of the more advanced devices have been based on and have sparked worldwide innovation efforts aiming to create an ecosystem of components that will enable what is bound to be a revolution in form factor for wearables.

User interface is probably one of the most significant features in this revolution. As interfacing with computers undergoes a constant evolution, allowing for wider adoption as interaction becomes more “natural”, smartglasses are bringing about the next big step in this ever-changing space. From keyboards to touchscreens to cameras & positioning/location/infrared sensors, a new wave of innovation is making interfacing with computers gesture-based, and nowhere else is that more obvious than in eye-worn computing.

Interesting


Scientists have implanted a wireless device the size of a peppercorn inside mice to stimulate nerves.

The technique combines optogenetics—using light to control the activity of the brain—with a newly developed method for wirelessly powering implanted devices. It’s described in a paper published in Nature Methods.

“This is a new way of delivering wireless power for optogenetics,” says Ada Poon, an assistant professor of electrical engineering at Stanford University. “It’s much smaller and the mouse can move around during an experiment.”

Read more