“Travel agencies have struggled to bring people back into their stores over the last few years thanks to the Internet. In the UK and Belgium, however, one of Europe’s biggest tour operators Thomas Cook rolled out Samsung Gear VR headsets in a bid to entice customers back into its stores by offering to bring dream vacation destinations to life.”
Oak Ridge National Laboratory (ORNL) has been working on a wireless charging system for EVs and plug-in hybrids for years. The goal is to create a system that makes charging EVs and hybrids easier for drivers and to make EVs and other plug-in vehicles as cheap and easy to own as a gasoline vehicle. ORNL has announced that it has demonstrated a 20-kilowatt wireless charging system that has achieved 90% efficiency at three times the rate of the plug-in systems commonly used in electric cars today.
ORNL has multiple industry partners that are participating in this program including Toyota, Cisco Systems, Evatran, and Clemson University International Center for Automotive Research. “We have made tremendous progress from the lab proof-of-concept experiments a few years ago,” said Madhu Chinthavali, ORNL Power Electronics Team lead. “We have set a path forward that started with solid engineering, design, scale-up and integration into several Toyota vehicles. We now have a technology that is moving closer to being ready for the market.”
The wireless charging system includes ORNL-built inverter, isolation transformer, vehicle-side electronics and coupling technologies, and it was built in under three years. The demonstrator system is integrated into a Toyota RAV4 with a 10kW battery. The next goal for the researchers is to create a 50kW wireless charging system that can match the power of commercially available quick plug-in chargers. These higher power-charging systems are essential for charging larger electrified vehicles like buses and trucks.
One of the main principles of quantum physics is the superposition of states. Systems are simultaneously in different states, i.e. “alive and dead” at the same time such as Schrödinger’s cat, until someone measures them and the system opts for one of the possibilities. As long as the superposition lasts the system is said to be in a coherent state. In real systems, sets of diverse elemental particles or atoms existing in a state of superposition, for example, in different positions simultaneously, with different levels of energy, or with two opposite spin orientations, have weak coherence: the superposition is broken easily by the vibrations associated with temperature and the interactions with the environment.
In the scientific article, researchers from the Universitat Autònoma de Barcelona Department of Physics Andreas Winter and Dong Yang propose a groundbreaking method with which to measure the degree of coherence in any given quantum state. The researchers created simple formulas to calculate how much “pure coherence” is contained in a given quantum state, by answering two fundamental questions: How efficiently can one transform the state into “pure coherence”? And how efficient is the reverse process?
“At first the quantum state must be distilled. We must see how much coherence can be extracted from it,” explains Andreas Winter, to later “once again form a noisy state in which the coherence is diluted.” The distillation and dilution process allows measuring the strength of coherence of the initial state of superposition with experiments which can be tailored to each particular case. This is an outstanding contribution to the study of quantum physics given that “traditionally, to measure the degree of coherence of a superposition it was necessary to be able to measure the visibility of interference fringes, linked to standardised experiments,” Winter highlights. “With our approach, in contrast, the experiment can be adapted to every state in order to make the quantum coherence manifest itself better.”
Interesting Futurism Animation 27
Posted in futurism