Toggle light / dark theme

The cells with hyper-long telomeres in these mice appear to be perfectly functional. When the tissues were analysed at various moments (0, 1, 6 and 12 months of life), these cells maintained the additional length scale (they shortened over time but at a normal rhythm), accumulated less DNA damage and had a greater capacity to repair any damage. In addition, the animals presented a lower tumour incidence than normal mice.

These results show that pluripotent stem cells that carry hyper-long telomeres can give rise to organisms with telomeres that remain young at the molecular level for longer. According to the authors, this “proof of concept means that it is possible to generate adult tissue with longer telomeres in the absence of genetic modifications”.


The Telomeres and Telomerase Group at the Spanish National Cancer Research Centre (CNIO), in collaboration with the Centre’s Transgenic Mice Core Unit, has succeeded in creating mice in the laboratory with hyper-long telomeres and with reduced molecular ageing, avoiding the use of what to date has been the standard method: genetic manipulation. This new technique based on epigenetic changes that is described today in the pages of Nature Communications, avoids the manipulation of genes in order to delay molecular ageing. The study also underlines the importance of this new strategy in generating embryonic stem cells and iPS cells with long telomeres for use in regenerative medicine.

Telomeres (the protective structures located at the ends of chromosomes) are essential to the stability of our genetic material and to maintain the “youthful state” of our and of our bodies. However, get shorter as we age. Once they reach a critical length, cells enter a state of senescence or die. This is one of the molecular causes of cellular ageing and of the emergence of ageing-related diseases.

(Phys.org)—Werner Heisenberg originally proposed the uncertainty principle in 1927, but his original proposal was somewhat different than how it is interpreted today. As a recent paper in Physical Review Letters explains, Heisenberg’s original statement was about error and disturbance in a measurement process. Over the years, however, Heisenberg’s original proposal has been restated in terms of the uncertainties intrinsic to quantum states. This aspect of the uncertainty principle has been studied extensively with well-developed theories and verified experimentally.

On the other hand, Heisenberg’s original proposal regarding error in the measurement process is not as well understood. In the new paper, a team of researchers led by Professor Jiangfeng Du at the University of Science and Technology of China has reported an experimental test of the measurement aspect of Heisenberg’s uncertainty principle using nuclear-spin qubits.

In his original proposal, Heisenberg predicted a tradeoff between error and disturbance. He suggested that when a gamma-ray microscope measures the position of an electron, the measurement inevitably disturbs the electron’s momentum. The smaller the measurement error, the larger the disturbance, and vice versa. This idea was described qualitatively but a complete quantitative description is still lacking today.

Read more

Patents filed on many pre-existing 3D printing processes are about to expire. As this occurs, it will bring on a new era in 3D printing. Machinery and material costs will plummet, and the quality of prints will increase.

An important shift is occurring in the 3D printing world: patents are expiring. Patents filed on pre-existing industrial printing processes, especially those filed at the turn of the century, have already expired or are set to expire in the coming years.

Take, for example, the case of Fused Deposition Modeling (FDM). The patent on FDM expired in 2009. As a result, prices for FDM printers dropped from over $10,000 to less than $1,000, which caused consumer-friendly 3D printer manufacturers– like MakerBot and Ultimaker– to pop up.

Read more

A team of theoretical physicists used Loop Quantum Gravity, string theory’s biggest contender, and showed that the calculations are consistent with the idea that black holes have no insides, but that objects are stuck on their surface.

There’s a lot in our universe we don’t completely understand, such as dark matter and dark energy. Indeed, in the bizarre world of quantum physics, ideas are constantly shifting and changing regarding the true nature of the (somewhat mysterious) forces that govern our universe.

This is what’s happening now in the debate over what black holes really are.

Read more

ENJOY!!! 2045 A.D. Cybernetically enhanced beings are in control of society. A new genetic disease is making humans reject their own organs, forcing one man to steal cybernetic implants from others to survive. By director Nguyen-Anh Nguyen.

Temple is a concept for a feature film project, produced by the team of the Akira Project.

For media/financing enquiries contact: [email protected]

**Check out this class by Anh about indie filmmaking and how he made the Akira Project and Temple. http://skl.sh/anh

When a young woman finds herself captured on board a military aircraft. The soldiers don’t think much of her, until their commander confirms her identity and all hell breaks loose. Produced by the talented Stoyan Yankov and Directed by talented Henrik B. Clausen! See the details below for more info…

INFORMATION AND CREDITS / ARENE

A Sci-Fi short film by.
Henrik B. Clausen and 3D College Denmark.

PRODUCTION COMPANIES:

Nifty!


Award winning graduation film NO-A completed at the Savannah College of Art and Design by a core team of 8 students.

The world is a desolate, unforgiving place in this action sci-fi with a surprising amount of heart. We follow NO-A (Noah), as he attempts to rescue Aixa, the young woman that created him. In his desperate attempt to save her, he must face an unknown enemy force and fight to keep them both alive.

© NO-A Productions.

Website: noafilm.org/
Facebook: facebook.com/pages/NO-A/948787145132068?-ref=aymt_homepage_panel

Twitter: twitter.com/NOA_Film

Credits
============================

Directed by.
Liam Murphy.

Read more

Not a big fan of laundry day? Well what if you could wash your clothes just by stepping into the sunshine? Thanks to researchers at RMIT University in Melbourne, a self-cleaning textile could make that possible in the very near future. With the help of special nanostructures grown directly into the fabric, these new textiles could degrade organic matter like dirt, dust, and sweat when exposed to a concentrated light source.

To achieve this effect, the nanostructures used by the RMIT University team are made copper and silver. These metals are great at absorbing visible light, and when they’re exposed to light from the sun or even a light bulb, the nanostructures react with increased energy that creates “hot electrons”.

Related: Columbia’s most comfortable clothes are also its smartest, thanks to textile tech.

Read more