Toggle light / dark theme

The troubling piece of this article is that the article leaves out how the underlying technology will need to change in order for AI to truly intertwine with humans. AI in the existing infrastructure and digital technology with no support of BMI, microbots, etc. will not evolve us to Singularity by itself and without changes to the existing digital landscape.


As artificial intelligence continuously evolves, the future of AI is also becoming more significantly challenging to perceive and comprehend for humans.

Read more

Samsung get into the cancer treatment space with their own Q-Dot technology? Another reason for the FDA to show up in tech’s backyard; lookout for all those future federal and state regs & compliance training that will be coming that eats up 20 hours each month of your scientists and engineering talent’s time.


For a lot of users, Samsung might be known best for their smartphones and other mobile devices, but the company is so much more than that. Many of you reading this might have one of Samsung’s Super HD TV sets, a curved Samsung TV or some other model of theirs. Next to smartphones one of their more popular consumer electronics is of course of TVs, and with the advent of new technology such as Quantum Dot, Samsung is getting even better at producing a great image. One area that you might expect to find this Quantum Dot technology being used is for medical uses, but that’s just what researchers have been exploring recently.

Explaining a Quantum Dot can become quite tricky, but to cut a long story short, they are semiconductors that are so small they register at the nanoscale side of things. In terms of Quantum Dots used in television displays, it’s their ability to precisely tune to a specific and exact part of the color spectrum that makes them so attractive, not to mention their much lower power draw. Now, Kim Sung-jee, a professor of the Chemistry department at Pohang University of Science and Technology (POSTECH), has said that “when combining protein which clings to cancer cells and quantum dots, it can be used to seek out cancer cells in the body”. It’s reasoned that the potential for these Quantum Dots to be so precise in terms of color reproduction can help physicians track down certain cancer cells.

Myung Seung-jae, chief director of Biomedical Research Center at Asan Institute for Life Sciences who joined Professor Kim in researching Quantum Dots to fight cancer, said that when a test was ran on animals with Cancer cells in their bodies drugs with Quantum Dots “attacked only cancer cells. When quantum dots meet cancer cells, they detect the change of potential of hydrogen (pH) and anti-cancer drugs”. So, while it seems a long way off, it looks like the same technology that makes for a more accurate and engaging picture for your TV could be used in order to fight cancer or at least better identify types of Cancer and how to combat them inside of the body.

Creating Q-Dots/ QDs (Acronym seems to depend on which reference book, article that you read) more cheaply and efficiently too.


Quantum dots (QDs) are semiconducting nanocrystals prized for their optical and electronic properties. The brilliant, pure colors produced by QDs when stimulated with ultraviolet light are ideal for use in flat screen displays, medical imaging devices, solar panels and LEDs. One obstacle to mass production and widespread use of these wonder particles is the difficulty and expense associated with current chemical manufacturing methods that often requiring heat, high pressure and toxic solvents.

But now three Lehigh University engineers have successfully demonstrated the first precisely controlled, biological way to manufacture quantum dots using a single-enzyme, paving the way for a significantly quicker, cheaper and greener production method. Their work was recently featured in an article in The New York Times called “A curious tale of quantum dots.”

The Lehigh team— Bryan Berger, Class of 1961 Associate Professor, Chemical and Biomolecular Engineering; Chris Kiely, Harold B. Chambers Senior Professor, Materials Science and Engineering and Steven McIntosh, Class of 1961 Associate Professor, Chemical and Biomolecular Engineering, along with Ph.D. candidate Li Lu and undergraduate Robert Dunleavy—have detailed their findings in an article called “Single Enzyme Biomineralization of Cadmium Sulfide Nanocrystals with Controlled Optical Properties” published in the Proceedings of the National Academy of Sciences (PNAS).

Great article about a mad-scientist whose vision caused the world to look cross-eyed. Many of us have been there before some time in our lives.

In 1981, Richard Feynman urged the world to build a quantum computer. In his own words.

“Nature isn’t classical, dammit, and if you want to make a simulation of nature, you’d better make it quantum mechanical, and by golly it’s a wonderful problem, because it doesn’t look so easy.”

Read more

I personally can confirm that QC is not being worked on and advance by just a couple groups such as D-Wave and IBM. The questions/bumps in the road that we will all face is threefold:

1) how do we standardize the QC? right now (like most innovation) is done in siloes and limited cross-collaboration across government, labs & universities, and commercial companies. 2) governance and compliance; how will these need to change across multiple areas 3) id & mitigate all impacts instead of after deployment (don’t be reactive) because we will not have that luxury due to hackers.


There is a temptation to lump quantum computing in with technologies such as fusion power in the sense that both have been proposed for decades with the promise of tremendous leaps in performance.

Whilst fusion power continues to frustrate, there are signs of real progress being made in quantum computing. There is barely a tech giant in the world that doesn’t have dedicated teams working on the topic, and these teams are beginning to bring quantum computing out of the lab and into the real world.

I know that I reported on this a few weeks ago; however, this article shares some additional insights on how this new method will enable more efficient smaller devices including promoting stabilization in Quantum Computing (QC)…


A multi-institutional team of researchers has discovered novel magnetic behavior on the surface of a specialized material that holds promise for smaller, more efficient devices and other advanced technology.

Researchers at the Department of Energy’s Oak Ridge National Laboratory, Massachusetts Institute of Technology and their collaborators used neutron scattering to reveal magnetic moments in hybrid topological insulator (TI) materials at room temperature, hundreds of degrees Fahrenheit warmer than the extreme sub-zero cold where the properties are expected to occur.

The discovery promises new opportunities for next-generation electronic and spintronic devices such as improved transistors and quantum computing technologies. Their research is discussed in a paper published in the journal Nature.

One of those freaky states of Quantum. Wild.


Two-quantum oscillations of atoms in a semiconductor crystal are excited by ultrashort terahertz pulses. The terahertz waves radiated from the moving atoms are analyzed by a novel time-resolving method and demonstrate the non-classical character of large-amplitude atomic motions.

The classical pendulum of a clock swings forth and back with a well-defined elongation and velocity at any instant in time. During this motion, the total energy is constant and depends on the initial elongation which can be chosen arbitrarily. Oscillators in the quantum world of atoms and molecules behave quite differently: their energy has discrete values corresponding to different quantum states. The location of the atom in a single quantum state of the oscillator is described by a time-independent wavefunction, meaning that there are no oscillations.

Oscillations in the quantum world require a superposition of different quantum states, a so-called coherence or wavepacket. The superposition of two quantum states, a one-phonon coherence, results in an atomic motion close to the classical pendulum. Much more interesting are two-phonon coherences, a genuinely non-classical excitation for which the atom is at two different positions simultaneously. Its velocity is nonclassical, meaning that the atom moves at the same time both to the right and to the left as shown in the movie. Such motions exist for very short times only as the well-defined superposition of quantum states decays by so-called decoherence within a few picoseconds (1 picosecond = 10-12 s). Two-phonon coherences are highly relevant in the new research area of quantum phononics where tailored atomic motions such as squeezed and/or entangled phonons are investigated.