Toggle light / dark theme

“Through Squad X, we want to vastly improve dismounted squad effectiveness in all domains by integrating new and existing technologies into systems that squads can bring with them,” said Maj. Christopher Orlowski, DARPA program manager. “The squad is the formation with the greatest potential for impact and innovation, while having the lowest barrier to entry for experimentation and system development. The lessons we learn and the technology we create could not only transform dismounted squads’ capabilities, but also eventually help all warfighters more intuitively understand and control their complex mission environments.”

Squad X intends to combine off-the-shelf technologies and new capabilities under development through DARPA’s Squad X Core Technologies (SXCT) program, which was launched specifically to develop novel technologies that Squad X could integrate into user-friendly systems. SXCT shares Squad X’s overarching goal of ensuring that Soldiers and Marines maintain uncontested tactical superiority over potential adversaries by exploring capabilities in four areas: precision engagement, non-kinetic engagement, squad sensing and squad autonomy. In an important step toward that goal, SXCT recently awarded Phase 1 contracts to nine organizations.

The U.S. Army, U.S. Navy and U.S. Marine Corps have expressed interest in future Squad X capabilities and plan to support the experimentation efforts with testing in simulated operational environments as the program progresses.

Read more

You need multiple clones of yourself as a humanoid robots created from your own 3D printer; we may be well on our way with this announcement.


An unusual egg-shaped booth in Tallinn’s Seaplane Harbour is where a small team of Estonian engineers is testing its new invention.

It’s a 3D scanner booth that allows visitors to capture a highly detailed three-dimensional scan of their face. They can then order either a digital or a 3D-printed figurine of themselves.

What if a map of the brain could help us decode people’s inner thoughts?

Scientists at the University of California, Berkeley, have taken a step in that direction by building a “semantic atlas” that shows in vivid colors and multiple dimensions how the organizes language. The atlas identifies brain areas that respond to words that have similar meanings.

The findings, to be published April 28, 2016 in the journal Nature, are based on a brain imaging study that recorded neural activity while study volunteers listened to stories from the “Moth Radio Hour.” They show that at least one-third of the brain’s cerebral cortex, including areas dedicated to high-level cognition, is involved in language processing.

Read more

Talk about changing everything that we thought about the brain and learning.


A new study from the University of Toulouse found that intelligence and learning aren’t limited to organisms with brains. By studying the mold Physarum polycephalum they found it can, over time, learn to navigate even irritating environments.

Read more

Supercomputer facing problems?


In the world of High Performance Computing (HPC), supercomputers represent the peak of capability, with performance measured in petaFLOPs (1015 operations per second). They play a key role in climate research, drug research, oil and gas exploration, cryptanalysis, and nuclear weapons development. But after decades of steady improvement, changes are coming as old technologies start to run into fundamental problems.

When you’re talking about supercomputers, a good place to start is the TOP500 list. Published twice a year, it ranks the world’s fastest machines based on their performance on the Linpack benchmark, which solves a dense system of linear equations using double precision (64 bit) arithmetic.

Looking down the list, you soon run into some numbers that boggle the mind. The Tianhe-2 (Milky Way-2), a system deployed at the National Supercomputer Center in Guangzho, China, is the number one system as of November 2015, a position it’s held since 2013. Running Linpack, it clocks in at 33.86 × 1015 floating point operations per second (33.86 PFLOPS).

Read more

Of course bio technology holds the key for better memory.


Newswise — A group of Boise State researchers, led by associate professor of materials science and engineering and associate dean of the College of Innovation and Design Will Hughes, is working toward a better way to store digital information using nucleic acid memory (NAM).

It’s no secret that as a society we generate vast amounts of data each year. So much so that the 30 billion watts of electricity used annually by server farms today is roughly equivalent to the output of 30 nuclear power plants.

And the demand keeps growing. The global flash memory market is predicted to reach $30.2 billion this year, potentially growing to $80.3 billion by 2025. Experts estimate that by 2040, the demand for global memory will exceed the projected supply of silicon (the raw material used to store flash memory). Furthermore, electronic memory is rapidly approaching its fundamental size limits because of the difficulty in storing electrons in small dimensions.

Read more

Quantum mechanics, with its counter-intuitive rules for describing the behavior of tiny particles like photons and atoms, holds great promise for profound advances in the security and speed of how we communicate and compute.

Now an international team of researchers has built a chip that generates multiple frequencies from a robust quantum system that produces time-bin entangled photons. In contrast to other quantum state realizations, entangled photons don’t need bulky equipment to keep them in their quantum state, and they can transmit quantum information across long distances. The new device creates entangled photons that span the traditional telecommunications spectrum, making it appealing for multi-channel quantum communication and more powerful quantum computers.

“The advantages of our chip are that it’s compact and cheap. It’s also unique that it operates on multiple channels,” said Michael Kues, Institut National de la Recherche Scientifique (INRS), University of Quebec, Canada.

Read more