Toggle light / dark theme

Sinonus uses technology developed at Chalmers University of Technology in Gothenburg, where researchers have been studying the concept of a structural battery using carbon fibre for years.

Massless batteries have been something of a holy grail for energy storage since 2007, because the weight of the battery effectively disappears once it is part of the load-bearing structure. The Chalmers team, led by professor Leif Asp, is one of the few to find a material that works.

Carbon fibre is known for its strength versus weight.

Science and Technology: Some robots could be “eaten” so they could walk around inside the body and perform tests or surgeries from the inside out; or administer medications.

Robots made of several nanorobots joined together could assemble and reassemble themselves inside the body even after being…


Robots and food have long been distant worlds: Robots are inorganic, bulky, and non-disposable; food is organic, soft, and biodegradable. Yet, research that develops edible robots has progressed recently and promises positive impacts: Robotic food could reduce , help deliver nutrition and medicines to people and animals in need, monitor health, and even pave the way to novel gastronomical experiences.

But how far are we from having a fully edible robot for lunch or dessert? And what are the challenges? Scientists from the RoboFood project, based at EPFL, address these and other questions in a perspective article in the journal Nature Reviews Materials.

Researchers have devised a new method of building quantum computers, creating and “annihilating” qubits on demand, using a femtosecond laser to dope silicon with hydrogen.

This breakthrough could pave the way for quantum computers that use programmable optical qubits or “spin-photon qubits” to connect quantum nodes across a remote network.

In turn, this creates a quantum internet that is more secure and capable of transmitting more data than current optical-fiber information technologies.