Toggle light / dark theme

Published today, using a technique which looks like trampoline, IBM scientists have measured the thermal conductance of metallic quantum point contacts made of gold down to the single-atom level at room temperature for the first time.

As everything scales to the nanoscale, heat – more precisely, the loss of it – becomes an issue in device reliability. To address this, last year, IBM scientists in Zurich and students from ETH Zurich published and patented a technique to measure the temperature of these nano-sized objects at and below 10 nanometer – a remarkable achievement. They called the novel technique scanning probe thermometry (video) and it provided engineers, for the first time, with the ability to map heat loss across a chip, and, more importantly, map heat loss down to the single device level and to map temperature distributions.

Read more

I actually had a person recently state quantum was a fad; boy were they ever wrong.


During the next ten years, quantum technologies will become part of and revolutionize our everyday lives in the form of computers, sensors, encryption, and much more—and in a way that can be difficult for us to comprehend.

Businesses will also boost both their research and development activities in this area.

“As from 2018, EU’s future flagship project, which is backed by EUR 1 billion, will focus on quantum technology, and several European countries are investing massively in the area. Innovation Fund Denmark has contributed DKK 80 million, and over the next couple of years, more funds are likely to be allocated to quantum research,” explains Ulrik Lund Andersen, Professor at DTU Physics.

Read more

NICE.


The Science

Newswise — Quantum computers — a possible future technology that would revolutionize computing by harnessing the bizarre properties of quantum bits, or qubits. Qubits are the quantum analogue to the classical computer bits “0” and “1.” Engineering materials that can function as qubits is technically challenging. Using supercomputers, scientists from the University of Chicago and Argonne National Laboratory predicted possible new qubits built out of strained aluminum nitride. Moreover, the scientists showed that certain newly developed qubits in silicon carbide have unusually long lifetimes.

The Impact

Quantum computers could break common cryptography techniques, search huge datasets, and simulate quantum systems in a fraction of the time it would take today’s computers. However, engineers first need to harness the properties of quantum bits. Engineering new qubits with less difficult methods could lower one of the significant barriers to scaling quantum computers from small prototypes into larger-scale technologies.

Read more

Nice write up and anyone working or researching central nervous system should not find this research and findings shocking.


Re: Scam hunter’s question; “Can you explain what a scalar torsion field model is?”

The History of Scalar Energy

The discovery of Scalar Energy can be attributed to James Clark Maxwell, a Scotsman who was born in the 19th century. Maxwell was a mathematical genius whose work led to the development of quantum physics. Albert Einstein worked on Maxwell’s findings and discovered “The Theory of Relativity”.

However, it took another fifty years after Maxwell’s discovery to prove the existence of Scalar Energy. It took one Nikola Tesla, who was born in Yugoslavia around 1856–1857 to demonstrate the existence of this form energy. Tesla, who became a US citizen in 1891 carried on Maxwell’s work and soon began to harness Scalar Energy without using any wires. Tesla referred to this energy as standing energy or universal waves. Albert Einstein and Otto Stern acknowledged the existence of this form of energy and made due reference to Scalar Energy in the 1920s. Nikola Tesla is generally considered the father of scalar electromagnetics. Tesla’s name for this was ‘Radiant Energy’.

Read more