Toggle light / dark theme

Humanity has long dreamed of establishing itself on other worlds, even before we started going into space. We’ve talked about colonizing the Moon, Mars, and even establishing ourselves on exoplanets in distant star systems. But what about the other planets in our own backyard? When it comes to the solar system, there is a lot of potential real estate out there that we don’t really consider.

Well consider Mercury. While most people wouldn’t suspect it, the closest planet to our sun is actually a potential candidate for settlement. Whereas it experiences extremes in temperature – gravitating between heat that could instantly cook a human being to cold that could flash-freeze flesh in seconds – it actually has potential as a starter colony.

Read more

Not so long ago we had to assume that we’ll never be able to travel faster than light. This was based on scientists’ sensible belief that we can travel through space but cannot change the nature of space itself. Then the idea of ‘Warp Drive’ came along to challenge and seemingly change all of the barriers that Einstein’s theory identified. Warp Drive is all about squashing and stretching space — a pretty ambitious task to begin with. So maybe it’s time again to have a look at how far we’ve already come or how close we are to seeing a real warp drive built by humans.

In May 1994, theoretical physicist Miguel Alcubierre finally presented his proposal of “The Warp Drive: Hyper-fast travel within general relativity” in a scientific journal called Classical and Quantum Gravity.

He indeed was inspired by Star Trek and its creator Gene Roddenberry, who famously coined the expression “Warp Drive” to explain the inexplicable propulsion of the Starship Enterprise as prodigious speed was just necessary to enable his fictional space travelers to leap from star to star on their trek.

Read more

They might not work, but no one will know for sure unless they’re given a chance.

That’s the general idea behind the recent selection of five aviation-related technologies for vigorous study as part of NASA’s ongoing Convergent Aeronautics Solutions project during the next two years of so, which itself is now in its second year.

Researchers will study a new kind of fuel cell, increasing electric motor output with the help of 3D printing, use of Lithium-Air batteries to store energy, new mechanisms for changing the shape of a wing in flight and basing a new antenna design on the use of lightweight aerogel.

Read more

Through the lens of imagination, humankind has the ability to see far beyond the present. The strongest of these guiding visions tend to coalesce and together steer the trajectory of where we’re headed—even if we don’t arrive exactly where expected.

But what fuels the imagination? The information we consume paints a picture of the world we inhabit. Both sci-fi and forecasting offer fertile ground for stimulating thoughts about the future, while also helping us imagine the steps necessary to get us closer or further from the destination.

With this in mind, we’ve compiled a few of our favorite future visions from past stories to spark your imagination. No one knows the future for sure—but here are a few wild possibilities.

Read more

IBM scientists have developed a new lab-on-a-chip technology that can, for the first time, separate biological particles at the nanoscale and could help enable physicians to detect diseases such as cancer before symptoms appear.

As reported today in the journal Nature Nanotechnology*, the IBM team’s results show size-based separation of bioparticles down to 20 nanometers (nm) in diameter, a scale that gives access to important particles such as DNA, viruses and exosomes. Once separated, these particles can be analyzed by physicians to potentially reveal signs of disease even before patients experience any physical symptoms and when the outcome from treatment is most positive. Until now, the smallest bioparticle that could be separated by size with on-chip technologies was about 50 times or larger, for example, separation of circulating tumor cells from other biological components.

IBM is collaborating with a team from the Icahn School of Medicine at Mount Sinai to continue development of this lab-on-a-chip technology and plans to test it on prostate cancer, the most common cancer in men in the U.S.

Read more