Toggle light / dark theme

ANN ARBOR, Mich., –July 12, 2016- Kraig Biocraft Laboratories, Inc. (OTCQB: KBLB) (“Company”), the leading developer of spider silk based fibers, today announced that it has received a contract valued at up to $1.0 million, if the option phase is awarded, for the development of high performance fibers for protective apparel applications. Under the fully funded base effort, valued at $99,962, the Company will deliver ballistic shoot packs constructed from its proprietary Dragon Silk™ material for performance testing. These shoot packs will be tested and evaluated for critical Soldier protective applications including ballistic impact. If awarded, the option phase will significantly expand this work with the US Army.

“Dragon Silk scores very highly in tensile strength and elasticity, which makes it one of the toughest fibers known to man and the ideal material for many applications,” stated Jon Rice, COO. “Providing material for this ballistic shoot pack initiative is an important next step for Kraig and spider silk. This contract reinforces the many significant potential applications for recombinant spider silk. Today is a great day for spider silk.”

“We’re proud to be working with the Department of Defense to assess the exciting potential of spider silk for military applications,” stated Kim K Thompson, CEO and founder of Kraig Biocraft Laboratories. “We are honored that the U.S. Army has selected us for this program. This effort will provide Kraig Labs with the opportunity to validate our longstanding belief that spider silk technology has had an incredible potential for protective and lifesaving materials and expand our ability to design and engineer innovative materials solutions.”

Read more

Reaction Engines Ltd. announces today the signing of a €10m Development Contract with the European Space Agency, finalizing the UK Government’s £60m commitment.

Reaction Engines Ltd., today announces the signing of a €10m European Space Agency (ESA) contract which will enable the development of a ground based demonstrator of SABRE, a new class of aerospace engine which is highly scalable with multiple potential applications in hypersonic travel and space access.

SABRE is at heart a rocket engine designed to power aircraft directly into space (single-stage to orbit) to allow reliable, responsive and cost effective space access, and in a different configuration to allow aircraft to cruise at high speeds (five times the speed of sound) within the atmosphere.

Read more

Here’s Liz Parrish talking about driving down costs, replacing viral vectors, and having all kinds of trouble with the lid of a bottle.


Liz Parrish, founder or Bioviva company, which developing genetic therapy against aging. He first in world tested such genetic therapy on himself and resulting effect make her cells be like 20 years younger.

Event begins in Russian language, but Liz and Roy talks in English.

I was asked this at Quora.com, where I answer questions under the pen name, ‘Ellery’. But the query deserves a companion question, and so I approached the reply by answering two questions.


You might have asked “Why was Bitcoin designed to have a cap?” But, instead, you asked “Why is the cap set at 21 million bitcoins”. Let’s explore both questions starting with the choice of a circulation cap…

Why set the cap at 21 million BTC?

The choice of a cap number is arbitrary and in fact, it could be 1 or it could be 1 hundred trillion. It makes no difference at all and it has no effect on the economy—even if Bitcoin were to be adopted as a currency all over the world. If it were set to 1 BTC, we would simply discuss nano-BTC instead of 1 BTC for amounts of about $650.

In fact, we already do this today. For many purposes, people are concerned with very small payments. And to best discuss these payments, we have the Satoshi. There are 100,000 Satoshi to each bitcoin (BTC).

What is important, is that the total number of bitcoin (regardless of how many units there are) can be divided into very tiny fractions. That way, the total worldwide supply can be divided into smaller and smaller slivers as market adoption gains traction. Everyone needs to earn, save, spend or pay with a piece of the pie. All users need to know is what fraction of the pie do I control? and not how many ounces, pounds, Kg, or tons is the pie. That is just a number.

Incidentally, the same could be said of gold (it can be shaved very thin), but gold is not quite like computer bits. It has industrial and cosmetic value, and this intrinsic demand for gold (beyond it’s role as a pure monetary instrument) has an effect on supply and demand along with the influence of investment, circulation, savings and reserve.

Why is there a cap at all?

At the beginning of this answer, I suggested another question: Why is Bitcoin capped at all? After all, the monetary supply in every country grows. Even gold production is likely to continue for centuries to come. Why not Bitcoin?

Satoshi designed Bitcoin to eventually become a deflationary currency. I believe that he/she recognized inflation is an insipid tax that constitutes an involuntary redistribution of earned wealth. With a firm cap on the total number of units that exist, governments can still tax, spend and even enforce tax collection. They can go about business building bridges, waging war and providing assistance to the needy. But without a printing press in the hands of transient politicians, they can only spend money with the consent of their constituents and residents.

Of course, they could borrow money by issuing bonds. But with a capped currency, each creditor would earnestly believe in the will and ability of the country to repay its debts.

In effect, monetary policy is restricted to the business of the governed, but the money itself is not coined by a domestic treasury. It is the province of something that is far more certain than a human institution. It arises from pure math. It is open and transparent. In effect, everyone is an auditor. That’s because the bookkeeping is crowd sourced.

For prescient legislators and national treasurers, Bitcoin presents far more of an opportunity than a threat. It is good for both government, business and consumers, because it forces everyone to be open and honest. Ultimately, it builds trust in government, because no one can cook the books, water down wealth, or print their way out of debt.

What about recession. Isn’t it a result of deflation?

Deflation doesn’t lead to recession. Rather, it sometimes accompanies a recession. Recession is caused by an uncertain job market, war, a massive supply chain interruption or political upheaval. In one way or another, it boils down to a lack of confidence sparked by one of the economy’s core foundations: consumers, investors, business or creditors.

Bitcoin as currency removes a major impediment to confidence. By creating a system that cannot be rigged, it fosters trust in government along with an open and transparent treasury.


Philip Raymond co-chairs CRYPSA and was MC at The Bitcoin Event in New York. He writes for Quora, LinkedIN, Wild Duck and Lifeboat Foundation, where he sits on the New Money Systems Board.

Not shocked by this because I have seen some of these policies in various forms already.


Berkshire Hathaway Specialty Insurance Co. on Tuesday said it has launched a U.S. professional liability policy for architects and engineers that includes cyber coverage.

Professional First Architects & Engineers Professional Liability Insurance’s cyber coverage addresses media, technology and network security and privacy liability exposures, including the cost of responding to a data breach or network extortion threat, BHSI said in a statement.

The coverage also includes access to a network of experts to assist in responding to a data breach or extortion threat, and risk management services including contract reviews, newsletters and best practices webinars, according to the statement.

Researchers at the Max Planck Institute of Molecular Physiology in Dortmund have now found a way to pinpoint the positions of individual molecules while at the same time measuring their activity and interactions in the same living cell. A dedicated cooling protocol on a microscope allows to pause cellular life at subzero temperatures, to let it continue to live again after warming. From the series of individual snapshots obtained, the researchers are able to form a precise spatial-temporal picture of the activity patterns of individual molecules within individual cells.

Fluorescence microscopy allows seeing where biological molecules are in cells. However, what Werner Heisenberg formulated for quantum physics to a certain extent has its analogy in biology: In the living state one can observe the collective movement of molecules in cells, which makes it however difficult to determine their exact positions. Paradoxically, the molecular dynamics that sustain life have to be halted to record the position of molecules using high-resolution fluorescence microscopy.

Living matter maintains its structure by energy consumption, which results in dynamic molecular patterns in cells that are difficult to observe by fluorescence microscopy, because the molecules are too numerous and their movements too fast. To tackle this problem a choice needs to be made: to precisely record the position of the molecules in a ‘dead’ state or to follow their collective behaviour in the living state. Although researchers have been able to stop movements in cells by chemical fixation, such methods lead to irreversible cell death and the acquired images of molecular patterns are not representative of a living system.

Read more