Toggle light / dark theme

Physics, as you may have read before, is based around two wildly successful theories. On the grand scale, galaxies, planets, and all the other big stuff dance to the tune of gravity. But, like your teenage daughter, all the little stuff stares in bewildered embarrassment at gravity’s dancing. Quantum mechanics is the only beat the little stuff is willing get down to. Unlike teenage rebellion, though, no one claims to understand what keeps relativity and quantum mechanics from getting along.

Because we refuse to believe that these two theories are separate, physicists are constantly trying to find a way to fit them together. Part-in-parcel with creating a unifying model is finding evidence of a connection between the gravity and quantum mechanics. For example, showing that the gravitational force experienced by a particle depended on the particle’s internal quantum state would be a great sign of a deeper connection between the two theories. The latest attempt to show this uses a new way to look for coupling between gravity and the quantum property called spin.

I’m free, free fallin’

One of the cornerstones of general relativity is that objects move in straight lines through a curved spacetime. So, if two objects have identical masses and are in free fall, they should follow identical trajectories. And this is what we have observed since the time of Galileo (although I seem to recall that Galileo’s public experiment came to an embarrassing end due to differences in air resistance).

Read more

Small magnetic fields from the human body can usually only be picked up by very sensitive superconducting magnetic field sensors that have to be cooled by liquid helium to near absolute zero (which is minus 273 degrees Celsius). But now researchers from the Niels Bohr Institute at the University of Copenhagen have developed a much cheaper and more practical optical magnetic field sensor that even works at room temperature or at body temperature.

“The optical magnetic field sensor is based on a gas of caesium atoms in a small glass container. Each caesium atom is equivalent to a small bar magnet, which is affected by external magnetic fields. The atoms and thus the magnetic field are picked up using laser light. The method is based on quantum optics and atomic physics and can be used to measure extremely small magnetic fields,” explains Kasper Jensen, assistant professor in the Center for Quantum Optics, Quantop at the Niels Bohr Institute at the University of Copenhagen.

Ultra sensitive magnetic field sensor.

Read more

Invisibility cloak has hidden Harry Potter and hobbits from view and now, this sci-fi staple may be moving closer to reality!

Scientists at Queen Mary University of London (QMUL) have made an object disappear by using a composite material with nano-size particles that can enhance specific properties on the object’s surface.

Researchers demonstrated for the first time a practical cloaking device that allows curved surfaces to appear flat to electromagnetic waves.

Read more

Smartphones and tablets are being used more frequently in the battlefield, and that means that battery power is more important than ever. Soldiers often carry spare battery chargers in the 90-pound combat packs they carry into war zones, but the batteries are often lost or broken. BAE Systems wants to help lighten the load with its new system that lets soldiers plug electronics directly into their clothing.

The BAE Systems Broadsword Spine is a harness that can be sewn into a soldiers vest, jacket, or belt that carries a battery pack and hides charging wires. The harness places the battery pack on the small of a soldier’s back and includes eight conductive fabric conduits that can be used to connect to a USB port.

Read more

Woo and other entrepreneurs are using fasts and other tricks to “hack” their brain chemistry like they would a computer, hoping to give themselves an edge as they strive to dream up the next billion-dollar idea. Known by insiders as “biohacking,” the push for cognitive self-improvement is gaining momentum in the Silicon Valley tech world, where workers face constant pressure to innovate and produce at the highest levels.

Read more

Summary: A new study provides a deeper understanding of the mechanisms behind OCD and suggests the disorder could be treated by a class of drugs that has been investigated in clinical trails.

Source: Duke.

Brain receptor acts as switch for OCD symptoms in mice.

A single chemical receptor in the brain is responsible for a range of symptoms in mice that are reminiscent of obsessive-compulsive disorder (OCD), according to a Duke University study that appears online in the journal Biological Psychiatry.

Read more

Scientists invent particles that will provide oxygen to your body without breathing!!!


This may seem like something out of a science fiction movie: researchers have designed microparticles that can be injected directly into the bloodstream to quickly oxygenate your body, even if you can’t breathe anymore. It’s one of the best medical breakthroughs in recent years, and one that could save millions of lives every year.

The invention, developed by a team at Boston Children’s Hospital, will allow medical teams to keep patients alive and well for 15 to 30 minutes despite major respiratory failure. This is enough time for doctors and emergency personnel to act without risking a heart attack or permanent brain injuries in the patient.

The solution has already been successfully tested on animals under critical lung failure. When the doctors injected this liquid into the patient’s veins, it restored oxygen in their blood to near-normal levels, granting them those precious additional minutes of life.