Toggle light / dark theme

Professor Michelle Simmons of the Univ. of Sydney is an early pioneer of QC and will go down in history as the 1st Mother of Quantum Computing and a person that all (women and men) can look up to and be a true role model for many in tech and science. I hope to continue to make young girls and women everywhere to learn about her and hopefully they (like me) will consider her a role model to follow.


Fields of research: Quantum Physics, Condensed Matter Physics Campus: Kensington Tags: Expanding Knowledge in the Information and Computing Sciences, Expanding Knowledge in the Physical Sciences.

Read more

Nice.


PV Nano Cell has commercially developed ‘Sicrys’, a single-crystal, nanometric silver conductive ink delivering enhanced performance for digital conductive printing in mass production applications. The inks are also available in copper-based form, delivering all of the product’s properties and advantages with improved cost efficiency.

Problem

Solar cell metallization is not yet fully optimized for cost and resource conservation. Cell producers currently endure silicon cell breakage during cell metallization, and higher-than-necessary costs for silver. Traditional screen printing of conductive grid lines involves direct contact with brittle cells, resulting in breakage and silicon waste. Additionally, the current technologies for metallization create lines that are wider and thicker than necessary, inflating silver costs.

Now, a team of engineers at Washington University in St. Louis has found a way to use graphene oxide sheets to transform dirty water into drinking water, and it could be a global game-changer.

“We hope that for countries where there is ample sunlight, such as India, you’ll be able to take some dirty water, evaporate it using our material, and collect fresh water,” said Srikanth Singamaneni, associate professor of mechanical engineering and materials science at the School of Engineering & Applied Science.

The new approach combines bacteria-produced cellulose and graphene oxide to form a bi-layered biofoam. A paper detailing the research is available online in Advanced Materials.

Read more

In approaches using conventional semiconductor materials, scientists typically created qubits in the form of individual electrons. However, this caused dephesing, and the information carriers were difficult to program and read. Now, researchers from the University of Basel, Ruhr University Bochum, and the Universite de Lyon have overcome this problem by using holes — instead of electrons — to create qubits.

A new type of quantum bit | university of basel.

A new Type of Quantum Bit | University of Basel

Read more

Like a whirlpool, a new light-based communication tool carries data in a swift, circular motion.

Described in a study published today (July 28, 2016) by the journal Science, the optics advancement could become a central component of next generation computers designed to handle society’s growing demand for information sharing.

It may also be a salve to those fretting over the predicted end of Moore’s Law, the idea that researchers will find new ways to continue making computers smaller, faster and cheaper.

Read more

Nice paper on QC from the Obama Administration. While reading this paper; I also kept in mind why the US, Europe, Canada, etc. all must accelerate our efforts on QC which is government backed hackers in China, etc. especially since China will have a Quantum Internet and have also accelerated their efforts on QC with their partnership with Australia’s QC efforts which many discoveries on QC has happened.

Read more