Toggle light / dark theme

“Computational design tool transforms flat materials into 3D shapes” — I could use this many times over.


Researchers at Carnegie Mellon University and the Swiss Federal Institute of Technology in Lausanne, Switzerland (EPFL) have developed a new computational design tool can turn a flat sheet of plastic or metal into complex 3D shapes. They say the tool enables designers to fully and creatively exploit an unusual quality of certain materials — the ability to expand uniformly in two dimensions.

In this case, the researchers were making hexagonal cuts into flexible, but not normally stretchable plastic and metal sheets to give them the ability to expand uniformly, up to a point. But the design tool could be useful for a variety of synthetic materials, known as auxetic materials that share this same distinctive quality.

Origami-style folding techniques have already helped produce devices such as cardiac stents, which must be maneuvered into the narrowed artery of a heart patient and then expanded to hold the artery open, and solar arrays that unfold after being launched into space. Auxetic materials could be used in similar ways, while also exploiting their additional capabilities.

Perfecting Synthetic biology — this definitely is advancement forward in the larger Singularity story.


In both higher organisms and bacteria, DNA must be segregated when cells divide, ensuring that the requisite share of duplicated DNA goes into each new cell. While previous studies indicated that bacteria and higher organisms use quite different systems to perform this task, A*STAR researchers have now found a bacterium that uses filaments with key similarities to those in multicellular organisms, including humans.

Robert Robinson from the A*STAR Institute of Molecular and Cell Biology has a long-standing interest in what he calls the “biological machines” that move DNA around when cells divide. He and his co-workers had gleaned from gene sequencing analysis that there was something distinctive about the DNA-moving machinery in the bacterium Bacillus thuringiensis.

Along with an international team of colleagues, the A*STAR researchers used electron microscopy and biochemical analysis to investigate the way small circular strands of DNA called plasmids moved in this bacterium. They identified a novel form of bacterial filament that combines to form tubules with some similarities to the microtubules observed in higher organisms. Bacterial systems previously studied also use protein filaments to move DNA, but they do not share such obvious similarities to those of higher organisms. The new-found similarity in Bacillus thuringiensis is of great interest from an evolutionary perspective as it suggests that evolution has furnished at least some bacteria and with different machineries but similar methods to manipulate DNA.

AI and Quality Control in Genome data are made for each other.


A new study published in The Plant Journal helps to shed light on the transcriptomic differences between different tissues in Arabidopsis, an important model organism, by creating a standardized “atlas” that can automatically annotate samples to include lost metadata such as tissue type. By combining data from over 7000 samples and 200 labs, this work represents a way to leverage the increasing amounts of publically available ‘omics data while improving quality control, to allow for large scale studies and data reuse.

“As more and more ‘omics data are hosted in the public databases, it become increasingly difficult to leverage those data. One big obstacle is the lack of consistent metadata,” says first author and Brookhaven National Laboratory research associate Fei He. “Our study shows that metadata might be detected based on the data itself, opening the door for automatic metadata re-annotation.”

The study focuses on data from microarray analyses, an early high-throughput genetic analysis technique that remains in common use. Such data are often made publically available through tools such as the National Center for Biotechnology Information’s Gene Expression Omnibus (GEO), which over time accumulates vast amounts of information from thousands of studies.

Read more

Beautiful.


Researchers at the University of California San Diego and the Massachusetts Institute of Technology (MIT) have come up with a strategy for using synthetic biology in therapeutics. The approach enables continual production and release of drugs at disease sites in mice while simultaneously limiting the size, over time, of the populations of bacteria engineered to produce the drugs. The findings are published in the July 20 online issue of Nature.

UC San Diego researchers led by Jeff Hasty, a professor of bioengineering and biology, engineered a clinically relevant bacterium to produce and then self-destruct and release the drugs at the site of tumors. The team then transferred the bacterial therapy to their MIT collaborators for testing in an animal model of colorectal metastasis. The design of the therapy represents a culmination of four previous Nature papers from the UC San Diego group that describe the systematic development of engineered genetic clocks and synchronization. Over the years, the researchers have employed a broad approach that spans the scales of synthetic biology.

Why Plants? Part III – Rise of The Plant Machines by Orlando de Lange.

Everyone talks about the rise of the robots. What about the rise of the “Vegetation/ Plant Machines?”


In part 3 of our series on plant synthetic biology, Orlando de Lange (@SeaGreenODL) of The New Leaf blog introduces how synbio approaches are being used to develop novel disease resistant crops, overcoming some of the challenges faced by monoculture farming.

The King’s man

With the need for smaller more cost effective living spaces in mind, Ori Systems has developed a line of modular furniture that makes the most of the space that is becoming more and more of a premium. And, though not yet applied outside the residential market, the technology has clear applications for maximizing precious office space as well.

The Ori in Ori Systems comes from the Japanese word origami, which makes a lot of sense when you see the furniture as it transforms a room with just the push of a button. And in so doing it can quickly transform a small living space with a variety of possible configurations. See the video below.

Read more

Yale University scientists have reached a milestone in their efforts to extend the durability and dependability of quantum information.

For the first time, researchers at Yale have crossed the “break even” point in preserving a bit of for longer than the lifetime of its constituent parts. They have created a novel system to encode, spot errors, decode, and correct errors in a quantum bit, also known as a “qubit.” The development of such a robust method of Quantum Error Correction (QEC) has been one of the biggest remaining hurdles in quantum computation.

The findings were published online July 20 in the journal Nature.

Read more