[http://amazingdiyprojects.com/]
Automated Large-Scale Restaurant
Posted in food, robotics/AI
Studies are showing that anatomical patterning found in the brain’s cortex may be controlled by genetic factors.
The highly consistent anatomical patterning found in the brain’s cortex is controlled by genetic factors, reports a new study by an international research consortium led by Chi-Hua Chen of the University of California, San Diego, and Nicholas Schork of the J. Craig Venter Institute, published on July 26 in PLOS Genetics.
The human brain’s wrinkled cerebral cortex, which is responsible for consciousness, memory, language and thought, has a highly similar organizational pattern in all individuals. The similarity suggests that genetic factors may create this pattern, but currently the extent of the role of these factors is unknown. To determine whether a consistent and biologically meaningful pattern in the cortex could be identified, the scientists assessed brain images and genetic information from 2,364 unrelated individuals, brain images from 466 twin pairs, and transcriptome data from six postmortem brains.
They identified very consistent patterns, with close genetic relationships between different regions within the same brain lobe. The frontal lobe, which has the most complexity and has experienced the greatest expansion throughout the brain’s evolution, is the most genetically distinct from the other lobes. Their results also suggest potential functional relationships among different cortical brain regions.
Ever really wanted to know what folks truly are thinking about?
A new experiment advances the idea that brain scans can teach us something about how the human mind works.
By Nathan Collins
Mind reading stands as one of science fiction’s most enduring improbabilities, alongside light-speed space travel and laser guns. But unlike those latter two, mind reading actually has a whiff of reality: In a new demonstration, psychologists have shown they can figure out how far along someone’s brain is in the process of solving a sophisticated math problem—a result that, more than anything else, indicates the promise of new brain-scanning techniques for understanding the human mind.
On the path towards Singularity — I believe that this is an individual choice. However, to remain relevant and competitive in industry we may see a day when folks will require this type of enhancement to compete, perform in military operations, etc.
The researchers carried out a survey of more than 4,700 US adults.
The survey asked the public on views of gene editing, implantation of brain chips, and transfusions of synthetic blood.
Finally, portable thermal imaging devices could be here soon.
The primary source of infrared radiation is heat—the radiation produced by the thermal motion of charged particles in matter, including the motion of the atoms and molecules in an object. The higher the temperature of an object, the more its atoms and molecules vibrate, rotate, twist through their vibrational modes, the more infrared radiation they radiate. Because infrared detectors can be “blinded” by their own heat, high-quality infrared sensing and imaging devices are usually cooled down, sometimes to just a few degrees above absolute zero. Though they are very sensitive, the hardware required for cooling renders these instruments less-than-mobile, energy-inefficient and limits in-the-field applications.
A paper published this week in the journal Optics Express, from The Optical Society (OSA), describes a new type of portable, field-friendly, mid-infrared detector that operates at room temperature. Room-temperature operation, notes Andreas Harrer of the TU-Wien Center for Micro- and Nanostructures, Austria and the first author of the paper, “is essential for detectors to be energy-efficient enough for portable and handheld applications. We want to pave the way to an infrared-detection technology which is flexible in design and meets all requirements for compact integrated field-applicable detection systems.”
The type of instrument developed by Harrer and his colleagues is known as a quantum cascade detector, or QCD. A QCD is a high-speed detector composed of semiconductor devices that sense specific wavelengths of infrared light and convert that light into proportionate electrical signals. A unique aspect of the design described by Harrer and his colleagues is that it consists of an 8 × 8 array of pixels, each approximately 110 microns square. Tuning is achieved by specifically adjusting the well and the barrier dimensions to a wavelength of 4.3 microns.
Interesting work on solar energy and Q-dot photosensitizers.
Interfacial triplet-triplet energy transfer is used to significantly extend the exciton lifetime of cadmium selenide nanocrystals in an experimental demonstration of their molecular-like photochemistry.
Photosensitizers are an essential component of solar energy conversion processes, in which they are used to generate the highly reactive excited states that enable energy conversion (e.g., photochemical upconversion).1, 2 Typically, molecular triplet photosensitizers are used for such applications, but to improve the solar energy conversion process, the identification and preparation of next-generation triplet photosensitizers is required. However, the design of such photosensitizers—suitable for solar energy conversion and photocatalytic applications—remains a challenge.3