Menu

Blog

Page 11416

Jul 11, 2016

‘Nano scalpel’ allows structuring of samples with nanometre precision

Posted by in categories: biological, nanotechnology

A new “nano scalpel” enables scientists at DESY to prepare samples or materials with nanometre precision while following the process with a scanning electron microscope. The Focused Ion Beam, or FIB, microscope which has now gone into service also allows a detailed view of the inner structure of materials. The device was purchased by the University of Bayreuth, as part of a joint research project on the DESY campus funded by the Federal Ministry of Research. The FIB will be operated at the DESY NanoLab jointly with the University of Bayreuth.

“The microscope is not only able to examine microscopic defects, cracks or point-like corrosion sites underneath the surfaces of , but also to machine the surface of samples with extremely high precision, on a nanometre scale,” explains Maxim Bykov, project scientist from the University of Bayreuth. A nanometre is a millionth of a millimetre. The can be used to remove material as though it were a microscopic milling machine; as a result, the combined ion beam and electron microscope is particularly interesting for a wide range of applications in nanotechnology, materials science and biology.

“Apart from examining the structure of materials, the ability of the ion beam to remove material also leads to a wide range of different applications,” says Natalia Dubrovinskaia who is a professor at the University of Bayreuth and in charge of the joint research project (No. 05K13WC3). One example is the preparation of tiny diamond anvils, which are used to hold samples during ultra high-pressure experiments. The diamonds used for this are so small that there is no other way of preparing them. The ion beam allows so-called double-staged diamond anvil cells to be prepared with nanometre precision. The ultra high-pressure experiments are carried out at DESY’s Extreme Conditions Beamline (ECB) P02.2, headed by DESY scientist Hanns-Peter Liermann.

Continue reading “‘Nano scalpel’ allows structuring of samples with nanometre precision” »

Jul 11, 2016

Mussels inspire scientists to attach biologically active molecule to titanium surface

Posted by in categories: biotech/medical, materials

Very cool; another example where nature inspires others. Einstein was inspired often by nature and its environment.


Titanium is used medically in applications such as artificial joints and dental implants. While it is strong and is not harmful to tissues, the metal lacks some of the beneficial biological properties of natural tissues such as bones and natural teeth. Now, based on insights from mussels—which are able to attach themselves very tightly to even metallic surfaces due to special proteins found in their byssal threads—scientists from RIKEN have successfully attached a biologically active molecule to a titanium surface, paving the way for implants that can be more biologically beneficial.

The work began from earlier discoveries that mussels can attach to smooth surfaces so effectively thanks to a protein, L-DOPA, which is known to be able to bind very strongly to smooth surfaces such as rocks, ceramics, or metals. Interestingly, the same protein functions in humans as a precursor to dopamine, and is used as a treatment for Parkinson’s disease.

Continue reading “Mussels inspire scientists to attach biologically active molecule to titanium surface” »

Jul 11, 2016

Nano-tech: How your DNA can enhance the power of computing

Posted by in categories: biotech/medical, computing, nanotechnology

I am glad others are seeing the light.


It holds the key to the future of bio-technology and computing.

Read more

Jul 11, 2016

BRCA mutations linked to prostate and uterine cancers

Posted by in categories: biotech/medical, genetics

Personally; I have heard this several years ago from some medical researchers. Glad that more have concluded this tie.


Genetic mutations on several genes including BRCA2 have been associated with prostate cancer; while in a separate study, a BRCA1 mutation has been linked to a particular form of uterine cancer.

The first study, published in the New England Journal of Medicine, found that 12 percent of men with advanced prostate cancer had inherited mutations in genes involved in the repair of damaged DNA.

Professor Johann de Bono of the Institute of Cancer Research in London and the Royal Marsden NHS Foundation Trust, who led the study, said: ‘Our study has shown that a significant proportion of men with advanced prostate cancer are born with DNA repair mutations – and this could have important implications for patients.

Read more

Jul 11, 2016

42,300 Transistor Megaprocessor Is Complete

Posted by in category: computing

Hmmm; okay.


As it turns out, the answer is not 42, it’s 42.3 — thousand. That’s how many discrete transistors spread across the 30 m2 room housing this massive computation machine. [James Newman’s] Megaprocessor, a seriously enlarged version of a microprocessor, is a project we’ve been following with awe as it took shape over the last couple of years.

Continue reading “42,300 Transistor Megaprocessor Is Complete” »

Jul 11, 2016

System controls robots with the brain

Posted by in categories: computing, drones, neuroscience, robotics/AI

More update on controlling drones with BMI.


Using wireless interface, operators control multiple drones by thinking of various tasks.

Continue reading “System controls robots with the brain” »

Jul 11, 2016

Uploading my brain waves to the cloud, Azure IoT Hub and Emotiv brain interface

Posted by in categories: drones, neuroscience

Nice read by Microsoft on their BMI efforts.


I have been reading a lot about brain interfaces and that the Tesla S can be summoned with the brain and that people have started having competitions with drones controlled by brain waves. I have recently acquired an Emotiv Insight® as shown in Figure 1 and have been doing some testing with it.

image

Continue reading “Uploading my brain waves to the cloud, Azure IoT Hub and Emotiv brain interface” »

Jul 11, 2016

Google Tests Post-Quantum Crypto

Posted by in categories: computing, internet, quantum physics, security

Good article overall; and yes QC is still evolving. However, to state Quantum networking is in its infancy is a wrong & misleading comment. Since 2009, Quantum Internet has been in beta at Los Alamos Labs. And, researchers will tell you that QC development can as far back as 1970s and the first official QC was introduced in 2009 when the first universal programmable quantum computer was introduced by University of Toronto’s Kim Luke.


Google has launched a two-year Chrome trial aimed at safeguarding the Internet against quantum computers, which security experts predict will shred all data.

Read more

Jul 11, 2016

Finding the human in robots

Posted by in categories: computing, drones, education, robotics/AI

Personally, I would love to see a majority of the elementary schools expose more children to robotics, Biocomputing, etc.


DRONE technology and other burgeoning fields beckon for Hunter kids.

Read more

Jul 11, 2016

Researchers develop faster, precise silica coating process for quantum dot nanorods

Posted by in categories: mobile phones, nanotechnology, quantum physics

Faster and better method around Q-dots development which ultimately extends the quality of Quantum Dots plus mass production of Q-Dots is much faster through this new method. Hoping this causes the costs of new cameras, phone displays, monitors/ video displays are now able to be created more cheaply and in larger quantities.


Materials researchers at North Carolina State University have fine-tuned a technique that enables them to apply precisely controlled silica coatings to quantum dot nanorods in a day — up to 21 times faster than previous methods. In addition to saving time, the advance means the quantum dots are less likely to degrade, preserving their advantageous optical properties.

Quantum dots are nanoscale semiconductor materials whose small size cause them to have electron energy levels that differ from larger-scale versions of the same material. By controlling the size of the quantum dots, researchers can control the relevant energy levels — and those energy levels give quantum dots novel optical properties. These characteristics make quantum dots promising for applications such as opto-electronics and display technologies.

Continue reading “Researchers develop faster, precise silica coating process for quantum dot nanorods” »