Toggle light / dark theme

Using ultrafast laser flashes, physicists from the Max Planck Institute have generated the fastest electric current that has ever been measured inside a solid material.

In the field of electronics, the principle ‘the smaller, the better’ applies. Some building blocks of computers or mobile phones, however, have become nearly as small today as only a few atoms. It is therefore hardly possible to reduce them any further.

Another factor for the performance of electronic devices is the speed at which electric currents oscillate. Scientists at the Max Planck Institute of Quantum Optics have now created electric currents inside solids which exceed the frequency of visible light by more than ten times They made electrons in silicon dioxide oscillate with ultrafast laser pulses. The conductivity of the material which is typically used as an insulator was increased by more than 19 orders of magnitude.

Read more

Oh boy!


Space vacuum that appears to be stable due to the complete absence of substance in it, is likely to be fraught with great danger. The idea about the destruction of the universe is based on the hypothesis of vacuum instability. Any system in our world has a certain amount of potential energy. But, space vacuum is not as empty as it may seem to be. Vacuum in space is filled with quantum particles, which, in turn, may seek their own “stability” to annihilate the material world in its entirety during the process.

A video about the possibility of self-destruction of our universe has gone on the Internet.

What happens when you knock the carbon out of diamonds? You end up maintaining 100 percent quantum integrity; therefore, you can now transmit multitude of Qubits together over a long distance instead of 1 Qubit in one transmission and among multiple QC Devices.


New breakthrough paves the way for the first practical quantum computers

Quantum computers are a reality but unlike the first traditional computers, which were large enough to fill a room, most of today’s quantum computers are very small with one, five, or even 16 qubits at their core and getting to the point where we have a truly practical quantum computer is going to require component by component advances until, one day, we get to the point where all of the blocks “just work”.

Researchers from Harvard University and Sandia Ion Beam Laboratory have just managed to make such an advance – by figuring out a way to link multiple quantum systems together within one piece of material.

New magnetoelectric multiferroic material operates at 100 times lower power (credit: Julia A. Mundy/Nature)

Lawrence Berkeley National Laboratory scientists have developed a new “magnetoelectric multiferroic*” material that could lead to a new generation of computing devices with more computing power while consuming a fraction of the energy that today’s electronics require.

Read more

(credit: iStock)

An artificial intelligence method developed by University College London computer scientists and associates has predicted the judicial decisions of the European Court of Human Rights (ECtHR) with 79% accuracy, according to a paper published today (Monday, Oct. 24) in PeerJ Computer Science.

The method is the first to predict the outcomes of a major international court by automatically analyzing case text using a machine-learning algorithm.*.

Read more