Toggle light / dark theme

Back in 1992; me and another peer who worked with me on ORNL’s ELIMS use to wish we had this technology then. And, now it looks like we’re getting closer to this capability.


An Algoma University professor has made strides in developing technology that lets ALS patients compose emails without typing.

Computer science professor George Townsend has developed the P300 Speller, a device that measures and reacts to the brain’s “surprise element” to recognize of letters of the alphabet.

Researchers have discovered that mutation in a gene can led to a form of hereditary colon cancer which was not identified earlier. The researchers discovered genetic changes in the MSH3 gene in patients and identified a new form of colon cancer.

“The knowledge about molecular mechanisms which lead to cancer is also a precondition for the development of new targeted drugs,” said Stefan Aretz from University of Bonn Hospital in Germany.

The formation of large numbers of polyps in the colon has a high probability of developing into colon cancer, if left untreated.

All that I can say is “WOW!”


CHINA is on the brink of launching a groundbreaking new satellite capable of conducting quantum experiments in space, leading some to predict it will usher in the beginning of a new space race.

The world will be watching very closely after the Chinese-led satellite launches in August. If it proves successful in carrying out the quantum experiments, China is expected to follow it with many more in a bid to create a super secure network that uses an encryption technique based on the principles of quantum communication.

The reason world powers will be paying such close attention is that quantum-enabled spacecrafts are able to provide communication pathways that are completely unhackable. While the technology has been trialled on the ground over short distances, the capability to do so across the globe would be a huge game changer — it holds the promise of a world with completely secure digital communication.

Apple and Q-Dots.


While we know that Apple’s next display shift will be to OLED for their 2017 Anniversary edition iPhone, Apple is always looking to the next wave technology just on the horizon. So what’s beyond OLED? At the moment, many think the next trend points to Quantum Dot LED or QDLED. While the structure of a QLED is very similar to OLED technology, the difference is that the light emitting centers are cadmium selenide nanocrystals, or quantum dots. Theoretically, the advantages to this type of display is that it could reportedly deliver brighter ‘pure color’ and consumes less power, in fact close to 50% less power. The technology is also ideal for consumer devices that demand a flexible display. When Apple first introduced their vision of an Apple Watch in 2013, they presented it with a ‘continuous’ display that completely wraps around a users wrist as noted in the patent figure below. A QDLED type of display would allow such a form factor to come to market.

2AA 88 CONTINUOUS DISPLAY COMMUNICATION BRACELET

While Quantum Dot based displays are no doubt many years out, Apple is already on record having explored the technology in a string of four patent filings that we covered back in 2014 in a report titled “Quantum Dots Could Take the Retina Display to the Next Level.” Today, another Quantum Dot invention came to light.

Professor Michelle Simmons of the Univ. of Sydney is an early pioneer of QC and will go down in history as the 1st Mother of Quantum Computing and a person that all (women and men) can look up to and be a true role model for many in tech and science. I hope to continue to make young girls and women everywhere to learn about her and hopefully they (like me) will consider her a role model to follow.


Fields of research: Quantum Physics, Condensed Matter Physics Campus: Kensington Tags: Expanding Knowledge in the Information and Computing Sciences, Expanding Knowledge in the Physical Sciences.

Read more

Nice.


PV Nano Cell has commercially developed ‘Sicrys’, a single-crystal, nanometric silver conductive ink delivering enhanced performance for digital conductive printing in mass production applications. The inks are also available in copper-based form, delivering all of the product’s properties and advantages with improved cost efficiency.

Problem

Solar cell metallization is not yet fully optimized for cost and resource conservation. Cell producers currently endure silicon cell breakage during cell metallization, and higher-than-necessary costs for silver. Traditional screen printing of conductive grid lines involves direct contact with brittle cells, resulting in breakage and silicon waste. Additionally, the current technologies for metallization create lines that are wider and thicker than necessary, inflating silver costs.