Toggle light / dark theme

This is interesting. Russia has gone already after Google over an anti-trust situation over Android. Now Apple. Wonder who is next? Meantime, China is refusing US tech and companies in many areas of its industry over US involvement of the S. China Sea decisions handed down by a tribunal at The Hague. And, everyone knows about the new partnership in the recent months between China and Russia. Looks like US largest GDP producer is battling on many fronts.


Russian antitrust authorities charged U.S. tech giant Apple on August 8 with fixing the retail prices for iPhones in the country.

The Federal Antimonopoly Service said its investigation “showed that from the start of official sales of iPhone 6s and iPhone 6s Plus in Russia, the majority of resellers set identical prices for them and held them for a certain period.”

It said resellers’ prices also coincide for other iPhone models. It named 16 retailers, including Russia’s Vimpelcom and Apple’s official online store, that allegedly take part in price fixing that it said was “coordinated” by the Apple group.

I love investing. Every investor who strives to understand their craft to the fullest, ends up at the undeniable conclusion that time is the most valuable asset, bar none. Without it, nothing else of value can exist, it’s the magic ingredient. We can leave value behind for our loved ones, but on an individual level, this intangible asset is a requirement to value and enjoyment as a life form.

Technological innovation and growth can be compared to a snowball rolling down a mountainside, growing faster with each rotation, while speeding up simultaneously. Moore’s Law has held for decades, some say we will hit a wall in silicon transistor shrinking, but the advent of graphene has recently given new light on how this can continue on. New materials, will keep the acceleration of processing power and shrinking of those technologies, intact.

Read more

One more of these; we may see government step in at the consumer’s urging.


Nobody was killed or even injured. But a minor accident involving a Tesla Model S running on Autopilot in China is again raising questions about exactly how the feature works.

The electric car company said Wednesday that it is investigating the Aug. 2 incident. The driver’s Tesla sideswiped a Volkswagen that was parked halfway in the lane of a busy Beijing highway. The company said Autopilot was engaged and the driver was not holding the steering wheel.

But the driver, Luo Zhen, claimed he was misled by Tesla. He told the Reuters news agency that Tesla salespeople described Autopilot as a “self-driving” system. On a test drive, he said “the demonstrator took his hands off the steering wheel and took his feet off the accelerator and the brake.”

We have seen the beauty of DNA in medical advancements, tech for storage, and even in designer fashion, Now, lets play with Art and art expression.


Tiny computers, microscopic art, bringing back the dodo—the future uses of the double helix.

Read more

By Kevin Kang

A recent article in ScienceDaily reviews a new approach in Synthetic Biology that allows cells to respond to a series of input stimuli and simultaneously remember the order of these stimuli over many generations. As noted by the senior investigator, Timothy Lu from MIT, combining computation with memory creates complex cellular circuits that can perform logic functions and store memories of events by encoding them in their DNA (1,2). In their current work, Dr. Lu and his colleagues created cells that can remember and respond to three different inputs, including chemical signals in a particular order, and in the future may be able to incorporate even more inputs (1,2,3). The cellular machines thus created are referred to as biological “state machines” because they exist in different states depending on the identity and order of inputs that they receive. The state machines rely on enzymes called recombinases. When activated by a specific input, recombinases either delete or invert a particular segment of DNA depending on the orientation of two DNA target sequences known as recognition sites. The segment of DNA between these sites may have recognition sites for other recombinases that respond to different inputs. Flipping or deleting these sites permanently changes what will happen if a second or third recombinase is later activated. Therefore, a cell’s history is determined by sequencing its DNA. In a version of this system with just two inputs, there are five possible states for this circuit: states corresponding to no input, input A alone, input B alone, A followed by B, and B followed by A. Dr. Lu’s team in MIT has designed and built circuits that record up to three inputs, in which sixteen states are possible (1,2).

Besides creating circuits that record events in a cell’s life and then transmit these memories to future generations, the researchers from MIT also placed genes into the array of recombinase binding sites along with genetic regulatory elements. In these circuits, when recombinases rearrange the DNA, the circuits record the information as well as control which genes get turned on and off. Lu’s lab tested this work in bacteria by color coding the identity and order of input stimuli, so input A followed by B would would lead to bacteria fluorescing red and green, but input B followed by A would lead to red and blue fluorescence. Hence, these techniques can be used not only to record the states that the cells experience over time, but also to deploy in state-dependent gene expression programs (1,2).

Read more