Toggle light / dark theme

As the biotech revolution accelerates globally, the US could be getting left behind on key technological advances: namely, human genetic modification.

A Congressional ban on human germline modification has “drawn new lines in the sand” on gene editing legislation, argues a paper published today in Science by Harvard law and bioethics professor I. Glenn Cohen and leading biologist Eli Adashi of Brown University. They say that without a course correction, “the United States is ceding its leadership in this arena to other nations.”

Germline gene modification is the act of making heritable changes to early stage human embryos or sex cells that can be passed down to the next generation, and it will be banned in the US. This is different from somatic gene editing, which is editing cells of humans that have already been born.

Read more

G. Owen Schaefer, National University of Singapore

Would you want to alter your future children’s genes to make them smarter, stronger or better-looking? As the state of the science brings prospects like these closer to reality, an international debate has been raging over the ethics of enhancing human capacities with biotechnologies such as so-called smart pills, brain implants and gene editing. This discussion has only intensified in the past year with the advent of the CRISPR-cas9 gene editing tool, which raises the specter of tinkering with our DNA to improve traits like intelligence, athleticism and even moral reasoning.

Read more

In Greek mythology, the Chimera is a monster that is part lion, part goat and part snake. Far from reality, sure, but the idea of mixing and matching creatures is real — and has ethicists concerned.

That’s because last week, the National Institutes of Health proposed a new policy to allow funding for scientists who are creating chimeras — the non-mythological kind. In genetics, chimeras are organisms formed when human stem cells are combined with tissues of other animals, with the potential for creating human-animal hybrids.

Pablo Ross of the University of California, Davis, inserts human stem cells into a pig embryo as part of experiments to create chimeric embryos.

Read more

Could humans regrow limbs? Genetic switches for regenerating tissue are traced back 420 million years…


But ultimately the researchers hope to see if the mechanism could be exploited to allow humans to regenerate limbs themselves, although they warn it could be several decades before that is possible.

Dr Yin said: ‘It depends on the pace of discovery, which is heavily dependent on funding.’

Dr Kevin Strange, president of MDI Biological Laboratory, added: ‘Scientists here are studying an evolutionarily diverse range of animals to gain insight into the genetic mechanisms underlying the repair and regeneration of complex tissues and why these processes are poorly active in humans.

Russian scientists said they have artificially produced a unique molecule that can rapidly regenerate damaged human tissue, boasting both antibacterial and antiviral defenses, as well as stem cell growth stimulation.

The peptide, Acegram, was developed at a laboratory in the Russian Ural city of Chelyabinsk.

The molecule is said to have a very strong regenerating effect due to attracting healthy cells to injured, irritated areas in the human body.

Read more

The US Department of Defense has developed a portable, on-demand biopharmaceutical production system that could be used in warzones to make treatments at point-of-care.

The platform was developed as part of a US Defense Advanced Research Projects Agency (DARPA) program to provide far-forward-deployed Service members “what they need when they need it, obviating the need for individual drug stockpiling, cold storage, and complex logistics,” Tyler McQuade, program manager for DARPA’s Battlefield Medicine program, told Biopharma-Reporter.com.

The platform, developed in conjunction with researchers at the Massachusetts Institute of Technology (MIT), consists of a biologics expression system engineered to secrete multiple therapeutic proteins and a millilitre-scale perfusion microfluidic platform.

Read more

Up to seven potential terror attacks across Britain have been uncovered and stopped over the past year by a special MI5 unit which reads the minds of would-be attackers, the agency says.

MI5’s Behavioural Science Unit (BSU), made up of criminologists, psychologists and other academics, was launched in 2004 to analyse suspects’ behaviours to determine whether they are about to carry out an attack.

Read more

Built-in optics could enable chips that use trapped ions as quantum bits…


Researchers from MIT and MIT Lincoln Laboratory report an important step toward practical quantum computers, with a paper describing a prototype chip that can trap ions in an electric field and, with built-in optics, direct laser light toward each of them.

Read more