With the rapid advancement of artificial intelligence, unmanned systems such as autonomous driving and embodied intelligence are continuously being promoted and applied in real-world scenarios, leading to a new wave of technological revolution and industrial transformation. Visual perception, a core means of information acquisition, plays a crucial role in these intelligent systems. However, achieving efficient, precise, and robust visual perception in dynamic, diverse, and unpredictable environments remains an open challenge.
In open-world scenarios, intelligent systems must not only process vast amounts of data but also handle various extreme events, such as sudden dangers, drastic light changes at tunnel entrances, and strong flash interference at night in driving scenarios.
Traditional visual sensing chips, constrained by the “power wall” and “bandwidth wall,” often face issues of distortion, failure, or high latency when dealing with these scenarios, severely impacting the stability and safety of the system.
Thermodynamic computing introduces a new, potentially more energy-efficient and probabilistic approach to computing, which could revolutionize the way we approach and understand computing Questions to inspire discussion What is thermodynamic computing? —Thermodynamic computing is a new approach to computing that aims to be more energy-efficient and probabilistic.
The probe also achieved stable neural recordings in rat brains for up to two years, showing excellent biocompatibility and long-term recording stability, state news agency Xinhua reported.
Cheng Heping, with the Chinese Academy of Sciences and director of the National Centre for Biomedical Imaging Science at Peking University, told Xinhua that the achievement provided a powerful tool for high-throughput simultaneous monitoring of activity in multiple brain regions, and for exploring the relationships between neural activity and behaviour.
This study uncoversthe pivotal role of the enzyme METTL4 in promoting tumor metastasis through the mediation of nuclear N6-methyldeoxyadenosine (6mA) in mammalian cells. By utilizing cellular models, the study demonstrates how hypoxia induces METTL4 to mediate 6mA modifications. This process, in turn, activates genes essential for tumor metastasis, including the involvement of specific long noncoding RNA and a novel HIF-1α co-activator, ZMIZ1. These findings not only shed light on the epigenetic mechanisms driving tumor progression but also establish METTL4 as a prognostic marker for cancer and a potential target for therapeutic intervention. The promise of this discovery lies in its potential to inspire new strategies for combating hypoxia-induced tumor progression, opening avenues for further research and development in cancer treatment.
DNA N6-methyldeoxyadenosine (6mA) has been recognized in various organisms for its role in gene regulation. However, its function in mammalian cells, particularly in the context of cancer, has remained elusive. Previous studies have shown that 6mA modifications can influence gene expression and are present in several species, indicating a potential regulatory role in tumorigenesis. This research addresses a critical gap in understanding the nuclear role of 6mA and its enzymatic mediator METTL4, in mammalian tumor cells, particularly under hypoxia (a common condition in tumor microenvironments that promotes metastasis). The study posits that METTL4-mediated 6mA deposition is a key epigenetic modification that activates metastasis-inducing genes. This finding offers a new perspective on the mechanisms of tumor progression and identifying novel targets for therapeutic intervention.
According to recent World Health Organization statistics, cancer remains a leading cause of death globally, with metastatic cancers posing significant treatment challenges. This study’s revelations underscore the urgent need for novel therapeutic strategies to address the complex mechanisms of cancer metastasis. By linking the research findings to SDG 3, which aims to ensure healthy lives and promote well-being for all, the study highlights the potential for significant advancements in cancer treatment. Ultimately, the study paves the way for improved health outcomes and underscores the importance of continued investment in research and development to combat the global cancer burden.
The path to quantum supremacy is complicated by a fairy tale challenge – how do you carry a cloud without changing its shape?
The potential solution sounds almost as fantastical as the problem. You could guide the cloud to dance as it travels, to the beat of a unique material known as a time crystal.
Krzysztof Giergiel and Krzysztof Sacha from Jagiellonian University in Poland and Peter Hannaford from Swinburne University of Technology in Australia propose a novel kind of ‘time’ circuit might be up to the task of preserving the nebulous states of qubits as they’re carried through tempests of quantum logic.
Physicists have proposed a new theory: in the first quintillionth of a second, the universe may have sprouted microscopic black holes with enormous amounts of nuclear charge.
For every kilogram of matter that we can see — from the computer on your desk to distant stars and galaxies — there are 5kgs of invisible matter that suffuse our surroundings. This “dark matter” is a mysterious entity that evades all forms of direct observation yet makes its presence felt through its invisible pull on visible objects.
Fifty years ago, physicist Stephen Hawking offered one idea for what dark matter might be: a population of black holes, which might have formed very soon after the Big Bang. Such “primordial” black holes would not have been the goliaths that we detect today, but rather microscopic regions of ultradense matter that would have formed in the first quintillionth of a second following the Big Bang and then collapsed and scattered across the cosmos, tugging on surrounding space-time in ways that could explain the dark matter that we know today.
The ambitious plan involves catching the falling Super Heavy boosters using the launch tower’s “chopstick” arms. This innovative approach aims to revolutionise rocket recovery and enhance the reusability of the company’s Starship system.
Recent footage shared by SpaceX showcases tests of the chopstick mechanism at their Starbase facility in Texas. The company has been observed clamping the tower arms around a portion of a Super Heavy booster to evaluate the system’s parameters.
This testing is crucial for verifying the forces the chopsticks will need to withstand during an actual catch attempt.