Toggle light / dark theme

Wow; Europe is growing more nervous.


WASHINGTON: The Russian threat has driven Sweden so close to NATO that the once-neutral nation is becoming an ally in all but name. While the current Swedish government won’t apply for NATO membership — a position it just reiterated Friday — every other kind of collaboration is not only on the table, but actually happening more and more.

Recent agreements are bringing Sweden into NATO policy councils and wargame planning in unprecedented ways. Sweden is building up its forces to keep an ever closer watch on Russia both in the Arctic and the Baltic. A Host Nation Agreement — signed just months after Russia’s annexation of Crimea — makes it easier for NATO to operate in Swedish territory (if invited). Sweden has even sent troops to Afghanistan. With friends like these, who needs formal allies?

Read more

Hmmmm;


In December 2011, Vladimir Putin, then Russia’s prime minister, was positioned to reclaim his role as Russia’s president in the March 2012 elections.

Fittingly, he hosted a lavish banquet at New Century, Moscow’s richest equestrian club, for members of the Valdai Club and distinguished academics and journalists from around the world.

“The fare was extravagant: smoked trout, duck liver, venison soup, rhubarb sorbet, veal cheeks, and pear soup with caramel,” according to Douglas Schoen and Melik Kaylan, authors of “The Russia-China Axis.”

A black hole is a physicist’s playground: A place where some of the most bizarre and fundamental concepts in physics can be observed and tested. However, there is currently no way to directly observe black holes in action; these bodies of matter don’t emit the sort of radiation, like light or X-rays, that telescopes are equipped to detect. Fortunately, physicists have figured out ways to imitate the conditions of a black hole in the lab—and in creating analogues of black holes, they are beginning to unravel some the most fascinating puzzles in physics.

Jeff Steinhauer, a researcher in the Physics Department of Technion-Israel Institute of Technology, recently caught the attention of the physics community when he announced that he had used an analogue black hole to confirm Stephen Hawking’s 1974 theory that black holes emit electromagnetic radiation, known as Hawking radiation. Hawking predicted that this radiation would be caused by the spontaneous creation of a particle-antiparticle pair at the event horizon, the point at the edge of a black hole beyond which nothing—not even light—can escape. Under the terms of Hawking’s theory, as one of the particles crosses the event horizon and is captured by the black hole, the other would be ejected into space. Steinhauer’s experiment was the first to exhibit the sort of spontaneous fluctuations that support Hawking’s calculations.

Physicists have cautioned that this experiment still doesn’t confirm the existence of Hawking radiation in astronomical black holes, as Steinhauer’s black hole isn’t exactly the same as one we might observe in space. It’s not yet physically possible to create the intense gravitational fields that form black holes. Instead, the analogue imitates a black hole’s ability to absorb light waves by using sound.

Read more

One-band effective mass model is used to simulation of electron gas properties in quantum well. We calculate of dispersion curves for first three subbands. Calculation results of Fermi energy, effective mass at Fermi level as function of electron concentration are presented. The obtained results are good agreement with the experimental dates.

Read more

CHANTILLY, Va., Sept. 13, 2016 /PRNewswire/ — Vencore Labs Inc., a wholly owned subsidiary of Vencore Inc., announced today that it has been awarded two prime contracts for the Rapid Attack Detection, Isolation and Characterization Systems (RADICS) program led by the U.S. Defense Advanced Research Projects Agency (DARPA). The contracts have a total value of $17M and work is slated to begin in August of this year.

Vencore Labs Logo (PRNewsFoto/Vencore, Inc.)

The objective of the RADICS program is to develop technologies for detecting and responding to cyberattacks on critical U.S. infrastructure, with an ultimate goal of enabling cyber and power engineers to restore electrical service within seven days in the event of a major attack. Vencore Labs, a leader in smart grid security and monitoring, will conduct research and deliver technologies in three of five technical areas (TA).

Read more

In early 2016 University Professor of Applied Physics Stephen Arnold earned a patent for his system for finding the size of one or more individual particles (such as nanoparticles) in real time using a microsphere’s whispering gallery modes.

Arnold and his team at Tandon’s MicroParticle PhotoPhysics Laboratory for BioPhotonics (MP3L) had generated excitement throughout the in 2012, when they created an ultra-sensitive biosensor capable of identifying the smallest single virus particles in solution.

Their technique was a major advance in a series of experiments to devise a diagnostic method sensitive enough to detect and a single virus particle in a doctor’s office or field clinic, without the need for special assay preparations or conditions. Normally, such assessment required the virus to be measured in the vacuum environment of an electron microscope, which added time, complexity and considerable cost.

Read more