Menu

Blog

Page 11340

Aug 8, 2016

Diamond-based light sources will lay a foundation for quantum communications of the future

Posted by in categories: computing, nanotechnology, particle physics, quantum physics

Dmitry Fedyanin from the Moscow Institute of Physics and Technology and Mario Agio from the University of Siegen and LENS have predicted that artificial defects in the crystal lattice of diamond can be turned into ultrabright and extremely efficient electrically driven quantum emitters. Their work, published in New Journal of Physics, demonstrates the potential for a number of technological breakthroughs, including the development of quantum computers and secure communication lines that operate at room temperature.

The research conducted by Dmitry Fedyanin and Mario Agio is focused on the development of electrically driven single-photon sources—devices that emit when an electrical current is applied. In other words, using such devices, one can generate a photon “on demand” by simply applying a small voltage across the devices. The probability of an output of zero photons is vanishingly low and generation of two or more photons simultaneously is fundamentally impossible.

Until recently, it was thought that quantum dots (nanoscale semiconductor particles) are the most promising candidates for true single-photon sources. However, they operate only at very low temperatures, which is their main drawback – mass application would not be possible if a device has to be cooled with liquid nitrogen or even colder liquid helium, or using refrigeration units, which are even more expensive and power-hungry. At the same time, certain point defects in the crystal lattice of diamond, which occur when foreign atoms (such as silicon or nitrogen) enter the diamond accidentally or through targeted implantation, can efficiently emit single photons at room temperature. However, this has only been achieved by optical excitation of these defects using external high-power lasers. This method is ideal for research in scientific laboratories, but it is very inefficient in practical devices.

Continue reading “Diamond-based light sources will lay a foundation for quantum communications of the future” »

Aug 8, 2016

Toward practical quantum computers: Built-in optics could enable chips that use trapped ions as quantum bits

Posted by in categories: computing, quantum physics

Quantum computers are largely hypothetical devices that could perform some calculations much more rapidly than conventional computers can. Instead of the bits of classical computation, which can represent 0 or 1, quantum computers consist of quantum bits, or qubits, which can, in some sense, represent 0 and 1 simultaneously.

Although quantum systems with as many as 12 have been demonstrated in the lab, building quantum computers complex enough to perform useful computations will require miniaturizing qubit technology, much the way the miniaturization of transistors enabled modern computers.

Trapped ions are probably the most widely studied qubit technology, but they’ve historically required a large and complex hardware apparatus. In today’s Nature Nanotechnology, researchers from MIT and MIT Lincoln Laboratory report an important step toward practical quantum computers, with a paper describing a prototype chip that can trap ions in an electric field and, with built-in optics, direct toward each of them.

Continue reading “Toward practical quantum computers: Built-in optics could enable chips that use trapped ions as quantum bits” »

Aug 8, 2016

Researchers Made the First Quantum Enigma Machine

Posted by in categories: encryption, quantum physics

A quantum enigma machine is theoretical device that is able to use photons to encrypt messages using keys that are shorter than the message itself—and now it’s real.

Read more

Aug 8, 2016

Interesting Futurism Photo 2

Posted by in category: futurism

Read more

Aug 8, 2016

Researchers Receive NSF Grant to Develop New Quantum Technologies for Secure Communication

Posted by in category: quantum physics

August 08, 2016 | By Liezel Labios Researchers Receive NSF Grant to Develop New Quantum Technologies for Secure Communication.

Read more

Aug 8, 2016

Scientists Create Language to Program Living Cells

Posted by in categories: biotech/medical, computing, education, internet

Nice — another step forward for all things connected.


Scientists can now talk to and even command living cells–to a limited degree at the moment, but with massive implications for the future. MIT biological engineers have created a computer code that allows them to basically hijack living cells and control them. It works similarly to a translation service, using a programming language to create a function for a cell in the form of a DNA sequence. Once it’s scalable, the invention has major ramifications. Future applications could include designing cells that produce a cancer drug when a tumor is detected or creating yeast cells that halt their own fermentation if too many toxic byproducts build up.

Continue reading “Scientists Create Language to Program Living Cells” »

Aug 8, 2016

China may be the future of genetic enhancement

Posted by in categories: bioengineering, biotech/medical, economics, genetics, neuroscience

Indeed, if we set ethical and safety objections aside, genetic enhancement has the potential to bring about significant national advantages. Even marginal increases in intelligence via gene editing could have significant effects on a nation’s economic growth. Certain genes could give some athletes an edge in intense international competitions. Other genes may have an effect on violent tendencies, suggesting genetic engineering could reduce crime rates.


We may soon be able to edit people’s DNA to cure diseases like cancer, but will this lead to designer babies? If so, bioethicist G Owen Schaefer argues that China will lead the way.

Read more

Aug 8, 2016

Tunnels in spacetime could someday take us to another universe, claims radical theory

Posted by in categories: cosmology, space travel

But, using an assumption that a wormhole can be found at the middle of a black hole, a group of Portugese researchers modelled how objects like a chair, a scientist and a spacecraft would be able to withstand the journey through it.

‘What we did was to reconsider a fundamental question on the relation between the gravity and the underlying structure of space-time,’ Diego Rubiera-Garcia, lead author from the University of Lisbon, Portugal, said.

Continue reading “Tunnels in spacetime could someday take us to another universe, claims radical theory” »

Aug 8, 2016

Triple signal of ‘alien megastructure’ star baffles astronomers

Posted by in category: space

A new dimming signal makes the famous star even more challenging to explain, but astronomers aren’t claiming that it’s aliens… yet.

Read more

Aug 8, 2016

Stem cell breakthrough allows scientists to grow and assemble human eyes

Posted by in categories: biotech/medical, innovation

https://youtube.com/watch?v=Rw1odkI0Nw8

“An ultimate goal of stem cell research is to turn on the regenerative potential of one’s own stem cells for tissue and organ repair and disease therapy,” said Dr. Kang Zhang of the UC San Diego School of Medicine.


You’ll soon be able to see the future with eyes grown in petri dishes. Scientists in Japan’s Osaka University have found a new way to turn stem cells into a human eyeball in what is (needless to say) a remarkable breakthrough for the medical community. According to lead biologist Kohji Nishida, a small sample of adult skin is all that would be required in order to grow retinas, corneas, lenses, and other key components of the eye.

Continue reading “Stem cell breakthrough allows scientists to grow and assemble human eyes” »