Toggle light / dark theme

As unmanned aerial drones have become a critical part of modern warfare, the Pentagon is now looking to deploy autonomous robots underwater, patrolling the sea floor on what one top Navy official called an “Eisenhower highway network,” complete with rest stops where the drones could recharge.

Although still in the development stages, the technology has matured in recent years to be able to overcome the vast difficulties of operating underwater, a far more harsh environment than what aerial drones face in the sky.

Saltwater corrodes metal. Water pressure can be crushing at great depths. And communication is severely limited, so the vehicles must be able to navigate on their own without being remotely piloted.

Read more

I have been evangelizing this for a while and glad to see others chiming in.


London, Nov 26 (IANS) Researchers have engineered cells with a “built-in genetic circuit” that produces a molecule that impairs the ability of cancer cells to survive and grow in their low oxygen environment.

The genetic circuit produces the machinery necessary for the production of a compound that inhibits a protein which has a significant and critical role in the growth and survival of tumours.

This results in the cancer cells being unable to survive in the low oxygen, low nutrient tumour micro-environment.

A synthetic metabolic pathway developed by Tobias Erb and his colleagues at the Max Planck Institute for Terrestrial Microbiology in Marburg converts CO2 from the atmosphere into organic matter more efficiently than plants are able to through photosynthesis. We asked the researcher what significance this process could have for climate protection, discussed the hurdles the research team had to overcome to achieve their goal, and looked at the new perspectives that synthetic biology opens up.

Does the synthetic metabolic pathway that fixes CO2 now represent an effective means of curbing climate change?

Firstly, we are aiming to understand the fundamental biological and chemical principles of how CO2 in gaseous form can be converted into organic molecules. Our primary motivation is not stopping . We are seeking to develop atmospheric CO2 as a source of carbon for the future using biological methods. Producing a CO2-neutral process or even one that removes CO2 from the atmosphere and has a positive impact on the climate would be a fantastic secondary effect.

Read more

Led by Nikolay Kandul, senior postdoctoral scholar in biology and biological engineering in the laboratory of Professor of Biology Bruce Hay, the team developed a technique to remove mutated DNA from mitochondria, the small organelles that produce most of the chemical energy within a cell. A paper describing the research appears in the November 14 issue of Nature Communications. There are hundreds to thousands of mitochondria per cell, each of which carries its own small circular DNA genome, called mtDNA, the products of which are required for energy production. Because mtDNA has limited repair abilities, normal and mutant versions of mtDNA are often found in the same cell, a condition known as heteroplasmy.

Read more

Hitting the pause button on development in embryos has implications for understanding aging.


UC San Francisco researchers have found a way to pause the development of early mouse embryos for up to a month in the lab, a finding with potential implications for assisted reproduction, regenerative medicine, aging, and even cancer, the authors say.

The new study—published online November 23, 2016 in Nature —involved experiments with pre-implantation mouse embryos, called blastocysts. The researchers found that drugs that inhibit the activity a master regulator of called mTOR can put these early embryos into a stable and reversible state of suspended animation.

“Normally, blastocysts only last a day or two, max, in the lab. But blastocysts treated with mTOR inhibitors could survive up to 4 weeks,” said the study’s lead author, Aydan Bulut-Karslioglu, PhD, a post-doctoral researcher in the lab of senior author Miguel Ramalho-Santos, PhD, who is an associate professor of obstetrics/gynecology and reproductive sciences at UCSF.

Progress towards making a blood scrubber to calibrate the pro aging factors in blood. Irina Conboy has spent the last 20 years working on parabiosis and signalling factors in blood and this is yet another step forward for their research.

Whilst many are seeking the secret sauce in young blood the data suggests it is much more likely the case that old blood contains too many pro-aging factors eg, TGF-beta, TNF-a, IL-6, CD38 etc… The aim is now to filter old blood and calibrate such factors in order to promote a pro-youthful signalling environment. If only this device was small enough to wear or implant.


In what could be a fresh chapter in the never-ending story of the search for eternal youth, scientists are to tinker with people’s blood in the hope of slowing down the ageing process and preventing age-related diseases.

Researchers in California plan to launch a clinical trial of the radical – and highly experimental – approach in the next six months, after a small study in mice found the treatment had promise.

“The day science begins to study non-physical phenomena, it will make more progress in one decade than in all the previous centuries of its existence.” – Nikola Tesla.

If you google “parapsychology,” the first thing that will probably pop up is a Wikipedia entry loosely (and, in my opinion, rather offensively) defining it as a “pseudoscience.”

This is unfortunate, because it distracts the reader from realizing that psychical research, also known as ‘psi’ (or parapsychology), is practiced by various scientists and reputable institutions all over the world.

Read more