Self-driving cars, trucks and buses might get the bulk of the headlines, but a team at the University of Washington Bothell (UWB) is developing a smaller kind of autonomous vehicle. With the aim of providing a relatively inexpensive alternative to owning an autonomous car, the team is creating a self-driving trike that may even open up the possibility of an automated ride-sharing network, like a bike version of Uber’s or NuTonomy’s proposed services.
Can We Make It In Space?
Posted in space
When we type in a search query, access our email via the cloud or stream a viral video, chances are we don’t spend any time thinking about the technological plumbing that is behind that instant gratification.
Sitaram Lanka and Derek Chiou are two exceptions. They are engineers who spend their days thinking about ever-better and faster ways to get you all that information with the tap of a finger, as you’ve come to expect.
Now, they have a new superpower to help them out.
E-ink displays may be easier on the eyes and less power-hungry than backlit LCDs used in most tablets and phones, but in the color department they’re still playing catch-up. However, this could change thanks to a new type of material developed at Chalmers University of Technology that is flexible, ultrathin and can produce the full color range of an LED-backlit LCD, but requires ten times less energy than a Kindle’s e-ink display.
Like a conventional e-reader screen, the material functions as a reflective display, so instead of being backlit like an LCD, the surface reflects the external light that hits it. Electrically conductive polymers covering the surface change how that light is absorbed and reflected, which allows it to recreate high resolution images and text. The end result is a material that’s less than one micron thick, flexible and extremely energy efficient.
“The ‘paper’ is similar to the Kindle tablet,” says Andreas Dahlin, lead author of the study. “It isn’t lit up like a standard display, but rather reflects the external light which illuminates it. Therefore it works very well where there is bright light, such as out in the sun, in contrast to standard LED displays that work best in darkness. At the same time it needs only a tenth of the energy that a Kindle tablet uses, which itself uses much less energy than a tablet LED display.”
In Brief:
- MIT researchers using the Alcator C-Mod reactor have achieved a new nuclear fusion pressure record of more than 2 atmospheres of pressure.
- The Alcator C-Mod is set to retire after over 23 years of use but its nuclear fusion experiments have brought us closer to nearly unlimited clean energy.