Toggle light / dark theme

Scientists have managed to coax living cells into making carbon-silicon bonds, demonstrating for the first time that nature can incorporate silicon — one of the most abundant elements on Earth — into the building blocks of life.

While chemists have achieved carbon-silicon bonds before — they’re found in everything from paints and semiconductors to computer and TV screens — they’ve so far never been found in nature, and these new cells could help us understand more about the possibility of silicon-based life elsewhere in the Universe.

After oxygen, silicon is the second most abundant element in Earth’s crust, and yet it has nothing to do with biological life.

Read more

DARPA is developing robotic support and maintenance of geosynchronous Earth orbit satellites with the Phoenix and GEO programs

The traditional process of designing, developing, building and deploying space systems is long, expensive and complex. These difficulties apply especially to the increasing number of expensive, mission-critical satellites launched every year into geosynchronous Earth orbit (GEO), approximately 22,000 miles above the Earth. Unlike objects in low Earth orbit (LEO), such as the Hubble Space Telescope, satellites in GEO are essentially unreachable with current technology.

DARPA’s Phoenix program seeks to change this paradigm and reduce the cost of space-based systems by developing and demonstrating new satellite assembly architectures and delivery systems. Phoenix is currently focusing on two primary technical areas of research:

Read more

By Michael Brooks

It’s supposed to be the most fundamental constant in physics, but the speed of light may not always have been the same. This twist on a controversial idea could overturn our standard cosmological wisdom.

In 1998, Joao Magueijo at Imperial College London, proposed that the speed of light might vary, to solve what cosmologists call the horizon problem. This says that the universe reached a uniform temperature long before heat-carrying photons, which travel at the speed of light, had time to reach all corners of the universe.

Read more

Speculation about what order rejuvenation biotechnologies will arrive.


The first rejuvenation therapies to work well enough to merit the name will be based on the SENS vision: that aging is at root caused by a few classes of accumulated cell and tissue damage, and biotechnologies that either repair that damage or render it irrelevant will as a result produce rejuvenation. Until very recently, no medical technology could achieve this goal, and few research groups were even aiming for that outcome. We are in the midst of a grand transition, however, in which the research and development community is finally turning its attention to the causes of aging, understanding that this is the only way to effectively treat and cure age-related disease. Age-related diseases are age-related precisely because they are caused by the same processes of damage that cause aging: the only distinctions between aging and disease are the names given to various collections of symptoms. All of frailty, disease, weakness, pain, and suffering in aging is the result of accumulated damage at the level of cells and protein machinery inside those cells. Once the medical community becomes firmly set on the goal of repairing that damage, we’ll be well on the way to controlling and managing aging as a chronic condition — preventing it from causing harm to the patient by periodically repairing and removing its causes before they rise to the level of producing symptoms and dysfunction. The therapies of the future will be very different from the therapies of the past.

The full rejuvenation toolkit of the next few decades will consist of a range of different treatments, each targeting a different type of molecular damage in cells and tissues. In this post, I’ll take a look at the likely order of arrival of some of these therapies, based on what is presently going on in research, funding, and for-profit development. This is an update to a similar post written four years ago, now become somewhat dated given recent advances in the field. Circumstances change, and considerable progress has been made in some lines of research and development.

1) Clearance of Senescent Cells

Nice update and glad the author mentioned Airbus, Gooch and Housego as I often see these 2 contributors missed in QC roadmap and companies engaged on QC activities. Airbus has been heavily involved with QC research and development for a few years now.


Physicsworld.com — news, views and information for the global physics community from Institute of Physics Publishing.

Read more

How can quantum information be stored as long as possible? An important step forward in the development of quantum memories has been achieved by a research team of TU Wien.

Conventional memories used in today’s computers only differentiate between the bit values 0 and 1. In quantum physics, however, arbitrary superpositions of these two states are possible. Most of the ideas for new quantum technology devices rely on this “Superposition Principle.” One of the main challenges in using such states is that they are usually short-lived. Only for a short period of time can information be read out of quantum memories reliably, after that it is irrecoverable.

A research team at TU Wien has now taken an important step forward in the development of new quantum storage concepts. In cooperation with the Japanese telecommunication giant NTT, the Viennese researchers lead by Johannes Majer are working on quantum memories based on nitrogen atoms and microwaves. The nitrogen atoms have slightly different properties, which quickly leads to the loss of the quantum state. By specifically changing a small portion of the atoms, one can bring the remaining atoms into a new quantum state, with a lifetime enhancement of more than a factor of ten. These results have now been published in the journal “Nature Photonics.”

Read more