Toggle light / dark theme

A synthetic cardiac stem cell (left) mirroring a real cardiac stem cell (right), offering therapeutic benefits without the associated risks (credit: Alice Harvey/NC State University)

Scientists have created the first synthetic version of a cardiac stem cell, offering therapeutic benefits comparable to those from natural stem cells — but without the risks and limitations, according to researchers from North Carolina State University, the University of North Carolina at Chapel Hill, and First Affiliated Hospital of Zhengzhou University in China.

The newly created synthetic stem cells cannot replicate. That means they could reduce some of the risks associated with natural stem-cell therapies — including tumor growth and immune rejection. The synthetic stem calls would also avoid the fragility of natural stem cells, which require careful storage and a multi-step process of typing and characterization before they can be used.

Read more

In Brief

  • Scientists are a little bit closer to unlocking the mystery of how the rules of the quantum realm translate to the rules of the classical physics of the observable world.
  • Experts predict that the materials used in this research, topological insulators, will play a key role in furthering this development.

It’s no surprise that quantum physics can be disorienting to the casual observer; after all, it does follow its own set of rules quite different from those of classical physics which rule over our everyday experience. In the quantum realm, things can and cannot be at the same time (to a certain extent) or are continually moving without spending energy. These don’t apply to the physics of macro-level matter.

These two realms are related, in so far as they occur in the same physical space. This relationship is what N. Peter Armitage, an associate professor of physics at Johns Hopkins University, wanted to figure out in a study published in the journal Science. “We found a particular material that is straddling these two regimes,” Armitage said.

Read more