Toggle light / dark theme

For the first time, an experiment has directly imaged electron orbits in a high-magnetic field, illuminating an unusual collective behavior in electrons and suggesting new ways of manipulating the charged particles.

The study, conducted by researchers at Princeton University and the University of Texas-Austin was published Oct. 21, in the journal Science. The study demonstrates that the electrons, when kept at very low temperatures where their quantum behaviors emerge, can spontaneously begin to travel in identical elliptical paths on the surface of a crystal of bismuth, forming a quantum fluid state. This behavior was anticipated theoretically during the past two decades by researchers from Princeton and other universities.

“This is the first visualization of a quantum fluid of electrons in which interactions between the electrons make them collectively choose orbits with these unusual shapes,” said Ali Yazdani, the Class of 1909 Professor of Physics at Princeton, who led the research.

Read more

A Chinese electronics component manufacturer says its products inadvertently played a role in a massive cyberattack that disrupted major internet sites in the U.S. on Friday.

Hangzhou Xiongmai Technology, a vendor behind DVRs and internet-connected cameras, said on Sunday that security vulnerabilities involving weak default passwords in its products were partly to blame.

According to security researchers, malware known as Mirai has been taking advantage of these vulnerabilities by infecting the devices and using them to launch huge distributed denial-of service attacks, including Friday’s outage.

Read more

According to our best understanding of the Universe, if you travel back in time as far as you can, around 13.8 billion years or so, you’ll eventually reach a singularity — a super-dense, hot, and energetic point, where the laws that govern space-time breakdown.

Despite our best attempts, we can’t peer past that singularity to see what triggered the birth of our Universe — but we do know of only one other instance in the history of our Universe where a singularity exists, and that’s inside a black hole. And the two events might have more in common than you’ve ever considered, as physicist Ethan Siegel explains over at Forbes.

It might sound a little crazy, but, as Siegel reports, from a mathematical perspective, at least, there’s no reason that our own Big Bang couldn’t have been the result of a star collapsing into a black hole in an alternate, four-dimensional universe.

Read more

Researchers at the universities of Valencia and Florence propose an approach to the experimental data generated by the Large Hadron Collider that solves the infinity problem without breaching the four dimensions of space-time.

The theories currently used to interpret the data emerging from CERN’s Large Hadron Collider (LHC), which have so far most notably led to the discovery of the Higgs boson, are poorly defined within the four dimensions of space-time established by Einstein in his Theory of Special Relativity. In order to avoid the infinities resulting from the calculations that these theories inspire, new dimensions are added in a mathematical trick which, although effective, does not reflect what we now know about our Universe.

Now though, a group of researchers at the Institute of Corpuscular Physics (IFIC, CSIC-UV) in Valencia has devised a way to side-step the infinity issue and keep the theory within the bounds of the four standard dimensions of space-time.

Read more

A new centre has opened to study the positive and negative implications of AI and ethical quandaries it poses.

“The rise of powerful AI will be either the best, or the worst thing, ever to happen to humanity,” Professor Stephen Hawking said in Cambridge, at the launch of the Centre for the Future of Intelligence (CFI).

The CFI is seeking to investigate the implications of AI for humanity, building an interdisciplinary community of researchers, bringing together philosophers, psychologists, lawyers and computer scientists. But, with strong links to technologists and policymakers, it has clear practical goals.

Read more

Five years ago, the Nobel Prize in Physics was awarded to three astronomers for their discovery, in the late 1990s, that the universe is expanding at an accelerating pace. Their conclusions were based on analysis of Type Ia supernovae — the spectacular thermonuclear explosion of dying stars — picked up by the Hubble space telescope and large ground-based telescopes. It led to the widespread acceptance of the idea that the universe is dominated by a mysterious substance named ‘dark energy’ that drives this accelerating expansion.

Read more

Using cells from the cartilage in patients’ noses, Swiss doctors have successfully made patches to treat 10 adults whose knee cartilage was damaged by injury.

Two years after the transplants, most of the patients grew new cartilage in their knees and reported improvements in pain, knee function and quality of life.

“We have developed a new, promising approach to the treatment of articular cartilage injuries,” said lead researcher Ivan Martin, a professor of tissue engineering at the University of Basel. The articular cartilage is the tissue that covers and protects the ends of the knee bones, and injuries to it can lead to degenerative joint conditions like osteoarthritis.

Read more