Toggle light / dark theme

Trying to simplify and understand imagination isn’t that easy. Should be a great read for my tech friends trying to replicate this process.


Imagination… we can all imagine things – even things we have never seen before. Even things that don’t exist. How do our brains achieve that?

Imagine a duck teaching a French class. A Ping-Pong match in orbit around a black hole. A dolphin balancing a pineapple.

Although this still looks like you’re part of a medical experiment; it is in fact a step forward in BMI progress as it is non-invasive & not bulky as the other BMI technology that I have seen. With the insights we’re able to collect from this model plus prove 80% accuracy in the neuro communication means next generations will be able to focus on materials to make the model more and more seamless. So, it is very promising.


A new non-invasive brain-computer interface allows people to control a robotic arm using only their minds.

(Photo : Sean Gallup/Getty Images)

Very promising for Giloblastoma patients.


Adding Tumor Treating Fields (TTFields) to maintenance temozolomide significantly prolongs both median and long-term survival.

Among patients with newly diagnosed glioblastoma multiforme, adding Tumor Treating Fields (TTFields) to maintenance temozolomide significantly prolongs both median and long-term survival, according to a study presented 21st Annual Scientific Meeting of the Society of Neuro-Oncology (SNO).

TTFields is a frequency-tuned, anti-mitotic, physical treatment modality delivered to the brain through a patient-operated, portable medical device called Optune. Results of a pre-specific successful interim analysis of the international, phase 3 trial (ClinicalTrials.gov Identifier: NCT00916409) comparing TTFields and temozolomide with temozolomide alone after radiotherapy and adjuvant temozolomide led to the approval of TTFields for the treatment of adult patients with glioblastoma.

Physical plasma is one of the four fundamental states of matter, together with solid, liquid, and gas, and can be completely or partially ionized (thermal/hot or non-thermal/cold plasma, respectively). Non-thermal plasma has many industrial applications, but plasma medicine is a new field of therapy based on non-thermal atmospheric pressure plasma that has been used in cancer treatment, wound healing, and blood coagulation. Plasma is known to react with air to produce highly reactive free radicals, and with liquid to produce long-lived reactive molecules that can be used for chemotherapy. However, the exact components responsible for the anti-tumor effects were unknown.

Now, a research team based at Nagoya University used plasma to activate Ringer’s solution, a salt solution with existing therapeutic functions, and showed that its lactate component had anti-tumor effects.

Previous work by the researchers developed plasma-activated cell culture medium as a form of chemotherapy, but selected Ringer’s solution in the present work because of its simpler composition and likelihood of forming less complex reaction products. Ringer’s lactate solution (Lactec) was irradiated with plasma for 3–5 minutes, after which it demonstrated anti-tumor effects on brain tumor cells.

Read more

Scientists at The Rockefeller University have created the most detailed three-dimensional images to date of an important step in the process by which cells make the nano-machines responsible for producing all-important protein. The results, described December 15 in Science, are prompting the researchers to re-evaluate how they envision this early phase in the construction of ribosomes.

“The structure they determined, shown above, belongs to a particle formally called the “small subunit processome.” Before this particle can fulfill its destiny to become the smaller half of a complete ribosome, the RNA within it needs to be folded, tweaked, and cut.

“Initially, we thought of the small subunit processome as a product on an assembly line, with molecular workers arriving from outside, much like the robots that would put together a car. But that analogy no longer appears apt,” says senior author Sebastian Klinge, head of the Laboratory of Protein and Nucleic Acid Chemistry.

Read more

From laptops to cellphones, technology advances through the ever-increasing speed at which electric charges are directed through circuits. Similarly, speeding up control over quantum states in atomic and nanoscale systems could lead to leaps for the emerging field of quantum technology.

An international collaboration between physicists at the University of Chicago, Argonne National Laboratory, McGill University, and the University of Konstanz recently demonstrated a new framework for faster control of a quantum bit. First published online Nov. 28, 2016, in Nature Physics, their experiments on a single electron in a diamond chip could create quantum devices that are less prone to errors when operated at high speeds.

Read more

With the help of this material, scientists are a little bit closer to unlocking the mystery of how the rules of the quantum realm translate to the rules of the classical physics of the observable world.

Experts predict that the materials used in this research, topological insulators, will play a key role in furthering this development.

Read more

This is a nice boost for QC and mimics something that should prove interesting for AI and SynBio technology.


Researchers in Aalto University, Finland, and P.L. Kapitza Institute in Moscow have discovered half-quantum vortices in superfluid helium. This vortex is a topological defect, exhibited in superfluids and superconductors, which carries a fixed amount of circulating current.

‘This discovery of half-quantum vortices culminates a long search for these objects originally predicted to exist in superfluid helium in 1976,’ says Samuli Autti, Doctoral Candidate at Aalto University in Finland.

‘In the future, our discovery will provide access to the cores of half-quantum vortices, hosting isolated Majorana modes, exotic solitary particles. Understanding these modes is essential for the progress of quantum information processing, building a quantum computer,’ Autti continues.

This is just wrong; its a disgrace to all things Quantum.


NEW YORK, Dec. 15, 2016 /PRNewswire/ — Beard Basics offers a full line of men’s beard grooming products as well as a year-round line of their version of beard baubles beard bauble ornaments for Christmas and special occasions. In addition, they offer an everyday line of beard and hair ornaments, glitter beard kits and for 2016, the next generation of beard ornaments, Quantum Beard Lights Beard Fairy Lights.

Beard Basics, a full line of men’s beard grooming products and special occasion items, has been creating and selling men’s beard grooming and their version of beard Baubles with beard bauble ornaments for more than a decade. The company offers a full range of products including holiday, sports-themed and year round beard and hair ornaments. In 2014, the company launched holiday beard ornamentation as part of the beard season awareness for men’s health. Beard Basic’s brand of holiday Beard Bauble Ornaments and glitter beard kits have been copied by many other companies but they are the trend setters when it comes to beards and the first to offer beard ornaments with mini clips.

Read more

Researchers from the Tyndall National Institute in Cork have created micro-structures shaped like small pyramids that can create entangled photons. Does this mean that quantum computers are closer than we realize?

Quantum computers have been the stuff of science fiction for the past few decades. In recent times, quantum computers have slowly become more of a reality with some machines successfully solving real world problems such as games and path finding algorithms.

But why are quantum computers so desired by tech firms and why is there so much research into the field? Silicon has been incredibly loyal to the tech world for the past 50 years, giving us the point contact transistor in 1947. Now, silicon is at the center of technology with computers, tablets, smartphones, the IoT, and even everyday items. In fact, you cannot walk down a city street without being in range of some Wi-Fi network or influence from a small silicon device.

Read more