Toggle light / dark theme

Research by scientists at Swansea University is helping to meet the challenge of incorporating nanoscale structures into future semiconductor devices that will create new technologies and impact on all aspects of everyday life.

Dr Alex Lord and Professor Steve Wilks from the Centre for Nanohealth led the collaborative research published in Nano Letters. The research team looked at ways to engineer electrical contact technology on minute scales with simple and effective modifications to nanowires that can be used to develop enhanced devices based on the nanomaterials. Well-defined electrical contacts are essential for any electrical circuit and electronic device because they control the flow of electricity that is fundamental to the operational capability.

Everyday materials that are being scaled down to the size of nanometres (one million times smaller than a millimetre on a standard ruler) by scientists on a global scale are seen as the future of electronic devices. The scientific and engineering advances are leading to new technologies such as energy producing clothing to power our personal gadgets and sensors to monitor our health and the surrounding environment.

Read more

Australia getting their QC production lines ready with this advancement. BTW — get ready as the printers are coming soon.


The Australian National University (ANU) has led an international team to create a nano-sized diamond that’s harder than the natural gem and which will be useful for cutting through super-hard mining materials.

ANU Associate Professor Jodie Bradby said her team, including ANU PhD student Thomas Shiell and experts from RMIT, the University of Sydney and the United States, fabricated nano-sized Lonsdaleite, which is a hexagonal diamond only found in nature at meteorite impact sites, such as in Arizona’s Canyon Diablo.

‘This new diamond is not going to be on any engagement rings. You’ll more likely find it on a mining site, but I still think that diamonds are a scientist’s best friend,’ said Assoc Prof Bradby from the ANU Research School of Physics and Engineering.

“His body, along with the others, will remain frozen indefinitely, with enough ongoing financial support to sustain its current state, news.com.au reported.

Last year, a Massachusetts Institute of Technology graduate successfully froze and reanimated a rabbit brain”.


Since his death, James Bedford’s body has been cryogenically frozen and awaiting reanimation on the edge of the Sonaran Desert in Arizona. This week marks the 50th year of Bedford’s deep freeze, making him the oldest “de-animated” human being on earth.

Bedford’s body is stored in the Alcor Life Extensions Foundation in Scottsdale, where it’s kept alongside 146 other frozen bodies, news.com.au reported.

A quick look at synthetic biology and its potential for health and treating age-related diseases.


All living organisms contain an instruction set that determines what they look like and what they do. These instructions are encoded in the organism’s DNA within every cell, this is an organism’s genetic code (or “genome”).

Mankind has been altering the genetic code of plants and animals for thousands of years, by selectively breeding individuals with desired features. Over time we have become experts at viewing and manipulating this code, and we can now take genetic information associated with the desired features from one organism, and add it into another one. This is the basis of genetic engineering, which has allowed us to speed up the process of developing new breeds of plants and animals.

More recent advances however have enabled scientists to create new sequences of DNA from scratch. By combining these advances in biology with modern engineering, chemistry and computer science, researchers can now design and construct new organisms with cells that perform new useful functions. This “customised” cell biology is the essence of synthetic biology.

Some exciting news from Lifespan.io about their current senescent cell therapy campaign.


While the CellAge campaign has done a great job thus far, with over 200 backers raising $11,000+ to better target dysfunctional “senescent” cells in the body, many supporters have let us know that the holidays, along with other concurrent fundraisers, have made it challenging to contribute.

In response we have decided to announce a 1-month extension for the CellAge campaign, and give the generous members of our community greater opportunity to support this important research.

If you are unfamiliar with the project: CellAge is developing tools to better target and remove harmful senescent cells that accumulate in the body with age and play a role in various diseases such as heart disease, cancer, and osteoarthritis, and which also complicate recovery after certain treatments like chemotherapy. Having the ability to selectively remove these cells is a critical component in the fight against age-related diseases and an important tool towards lifespans that are both long and healthy.

Read more

According to quantum mechanics, a vacuum isn’t empty at all. It’s actually filled with quantum energy and particles that blink in and out of existence for a fleeting moment — strange signals that are known as quantum fluctuations.

For decades, there had only ever been indirect evidence of these fluctuations, but back in 2015, researchers claimed to have detected the theoretical fluctuations directly. And now the same team says they’ve gone a step further, having manipulated the vacuum itself, and detecting the changes in these strange signals in the void.

We’re entering the territory of high-level physics here, but what’s really important in this experiment is that, if these results are confirmed, the researchers might have just unlocked a way to observe, probe, and test the quantum realm without interfering with it.

Read more