Toggle light / dark theme

Black holes are among the most fascinating objects in the known Universe. But despite the fact that they’re suspected to lurk at the centre of most galaxies, the reality is that no one has ever been able to actually photograph one.

That’s because black holes, as their name implies, are very, very dark. They’re so massive that they irreversibly consume everything that crosses their event horizon, including light, making them impossible to photograph. But that could be about to change, when a new telescope network switches on in April this year.

Called the Event Horizon Telescope, the new device is made up of a network of radio receivers located across the planet, including at the South Pole, in the US, Chile, and the French alps.

Read more

The old joke in the US Natl. Labs is if you worked at ORNL, you glowed at night. Looks like DARPA has found a safer way to do it.


Timothy Blake, a postdoctoral fellow in the Waymouth lab, was hard at work on a fantastical interdisciplinary experiment. He and his fellow researchers were refining compounds that would carry instructions for assembling the protein that makes fireflies light up and deliver them into the cells of an anesthetized mouse. If their technique worked, the mouse would glow in the dark.

Not only did the mouse glow, but it also later woke up and ran around, completely unaware of the complex series of events that had just taken place within its body. Blake said it was the most exciting day of his life.

This success, the topic of a recent paper in Proceedings of the National Academy of Sciences, could mark a significant step forward for . It’s hard enough getting these instructions, called messenger RNA (mRNA), physically into a cell. It’s another hurdle altogether for the cell to actually use them to make a protein. If the technique works in people, it could provide a new way of inserting therapeutic proteins into diseased cells.

Read more

More on the new bio-robots.


SCIENTISTS have created flesh-like mini-robots that can move when they detect light.

The fleet of walking “bio-bots” are powered using muscle cells and controlled using electrical and optical pulses.

The Sun reports the sinewy robots are less than half an inch long and are made from 3D-printed hydrogens and living cells.

We have stated this for a while; time to make it commercially available.


Our bodies are full of immune cells that circle around the blood, ready to see off any invaders.

And soon they could be getting a helping hand from tiny disease-fighting robots.

Scientists have created an army of magnetically-controlled robots which they say could help our bodies fight off diseases such as cancer.

Nice. My friend Alex Zhavoronkov will appreciate this article.


Feb. 16 (UPI) — Researchers at McGill University in Montreal have found that targeting the internal circadian or biological clock of cancer cells can affect growth.

Most cells in the human body have an internal clock that sets a rhythm for activities of organs depending on the time of day. However, this internal clock in cancer cells does not function at all or malfunctions.

“There were indications suggesting that the malfunctioning clock contributed to rapid tumor growth, but this had never been demonstrated,” Nicolas Cermakian, a professor in the department of psychiatry at McGill University, director of the Laboratory of Molecular Chronobiology at the Douglas Mental Health University Institute and author of the study, said in a press release. “Thanks to the use of a chemical or a thermic treatment, we succeeded in ‘repairing’ these cells’ clock and restoring it to its normal functioning. In these conditions, tumor growth drops nearly in half.”

Definitely yes on gene mutations; however, those where the disease has already appeared, or cancer that has occurred before will require another form of eradication/ prevention. And, that is where Quantum Biosystem technology will be effective in eliminating disease.


ALL inherited diseases could be cured within 20 years, a leading British expert claims.

It includes eradicating life-limiting conditions such as cystic fibrosis and Huntington’s disease.

Read more

NASA has selected proposals for the creation of two multi-disciplinary, university-led research institutes that will focus on the development of technologies critical to extending human presence deeper into our solar system.

The new Space Technology Research Institutes (STRIs) created under these proposals will bring together researchers from various disciplines and organizations to collaborate on the advancement of cutting-edge technologies in bio-manufacturing and space infrastructure, with the goal of creating and maximizing Earth-independent, self-sustaining exploration mission capabilities.

“NASA is establishing STRIs to research and exploit cutting-edge advances in technology with the potential for revolutionary impact on future aerospace capabilities,” said Steve Jurczyk, associate administrator for NASA’s Space Technology Mission Directorate in Washington. “These university-led, multi-disciplinary research programs promote the synthesis of science, engineering and other disciplines to achieve specific research objectives with credible expected outcomes within five years. At the same time, these institutes will expand the U.S. talent base in areas of research and development with broader applications beyond aerospace.”

Read more

Quantum interpolation makes viewing Biomolecules at room temp. possible without freezing. This technique will enable more powerful sensors than we have ever had before.


In the latest issue of Proceedings of the National Academy of Sciences, researchers from MIT and Singapore University of Technology and Design are describing a new technique that may finally give life scientists a detailed view into many of the biomolecules they work with. These days, X-ray diffraction is typically used to see the structure of a molecule. But this requires crystallization, a process not all molecules, including many proteins, are unwilling to undergo.

The technology uses tiny diamond crystals that have a nitrogen atom in place of a single carbon atom. These so-called “nitrogen vacancy centers” make the crystals react to minute fluctuations of magnetic and electric fields surrounding them. They’re so sensitive that the spins of individual atoms of a nearby molecule affect them enough to be detected by an external device.

Using nitrogen vacancy centers is not new, but previously the resolution that was achieved has not been sufficient to accurately image most molecules. That is because microwaves were typically used to detect the state of the diamond crystals, and the way they’ve been used has led to limited results. The latest research relies on “quantum interpolation,” which in simplified terms means taking multiple readings of the magnetic field around the diamond crystals using different microwave pulses at the same time.

Not too shock by this given other transplant patient’s stories of memories, etc.


1 brains
There are a lot of outrageous claims being made within the halls of neuroscience and artificial intelligence. Whether exaggerations, wishful thinking, the dreams of the egocentric and megalomaniacal to be immortal, or just drumming up funding for a never-ending round of “scientific investigation,” the year 2045 seems to always be cited as a target date.

Ray Kurzweil popularized the notion of The Singularity – the threshold when computing power would match or exceed the human brain and human biological systems – in his 2006 book The Singularity is Near: When Humans Transcend Biology. In that book, and subsequent articles, he theorized that 2045 would be the far end of when we could expect full integration of human and machine that would create immortality.