Toggle light / dark theme

This video is part of a series on genius, in proud collaboration with 92Y’s 7 Days of Genius Festival.

In the late 1990s, scientists thought they were close to locating specific genes that controlled for human intelligence in all its manifestations: musical genius, analytical acumen, physical prowess, etc. But the truth turns out to be more complicated, says Harvard psychologist and linguist Steven Pinker. There are many genes — perhaps thousands — that affect human intelligence, and while manipulating them may have predictable benefits, the adverse consequences remain unpredictable. Thus experimenting with our so-called intelligence genes will likely be met with high levels of skepticism in caution. It’s proof, says Pinker, that technological advancement doesn’t always march to the drum beat of inexorable forward progress.

Read more

In Brief:

Researchers found out that human eyes can detect single photons when in the dark. Human eyes become more sensitive when subjected to darkness, making our eyes capable of doing a task that even high-tech machines struggle to perform.

Researchers from Rockefeller University and the University of Vienna recently discovered that human eyes can detect even the smallest units of light, called photons, under super-dark conditions. This is the first time that experts were able to show this capability of the human eye.

Read more

A little more than 40 years ago, Dubai was a tiny pearl-fishing village lined with dirt roads. Now it’s the largest and most futuristic city in the world, the jewel of the United Arab Emirates (UAE). From manmade, palm tree-shaped archipelagos to jetpack-wearing firefighters and the world’s tallest building, the city has a reputation for taking on insanely ambitious projects and executing them with swiftness and expertise. Now, the UAE has a vision to build an even crazier city—on Mars.

On Tuesday, hot on the heels of the World Government Summit in Dubai, the vice president and prime minister of the UAE and Emir of Dubai, Sheikh Mohammad bin Rashid Al Maktoum, announced the country’s goal of building a “mini-city and community on Mars” with international cooperation.

“We aspire to great things, so my brother Mohammed bin Zayed [the first president of the UAE and crown prince of Abu Dhabi] and I today decided the UAE will join the global effort to send humans to Mars,” Al Maktoum announced, as if going to Mars were as easy as deciding what to have for dinner.

Read more

In a controversial move, a senior US scientific committee has given the green light to one of the most contentious forms of genome editing: where genetic changes made to human embryos will then be inherited by following generations.

For the first time, a panel of experts from two of the most recognised scientific institutions in the US has advised that this process – called germline editing – should be seriously considered as an option in the future, and not outright prohibited.

It’s a considerably more positive tone than the assessment of an international summit of scientists in December 2015, which declared that it would be “irresponsible to proceed” with germline editing unless safety issues and social consensus could be satisfied.

Read more

Nice advancement; looking forward indeed to the day I know longer look or touch a keypad again or even markers to a white or imaging board.


Memristors are resistive elements retaining information of their past dynamics. They have garnered substantial interest due to their potential for representing a paradigm change in electronics, information processing and unconventional computing. Given the advent of quantum technologies, a design for a quantum memristor with superconducting circuits may be envisaged. Along these lines, we introduce such a quantum device whose memristive behavior arises from quasiparticle-induced tunneling when supercurrents are cancelled. For realistic parameters, we find that the relevant hysteretic behavior may be observed using current state-of-the-art measurements of the phase-driven tunneling current. Finally, we develop suitable methods to quantify memory retention in the system.

Read more

Nice write up on the physical sensory parts of the brain and central nervous system. However, everyone is proving and continues to prove that with the electromagnetic spin properties tied to human cells is showing that there is the additional layer of cell to cell communication occurring within the human body as well as these cells which are charged are also able to connect with other charged particles in a room or location. My guess is we will need all to effectively enable meaningful/ useful system intelligence to provide real pragmatic value.


Not everyone is Fred Astaire or Michael Jackson, but even those of us who seem to have two left feet have got rhythm–in our brains. From breathing to walking to chewing, our days are filled with repetitive actions that depend on the rhythmic firing of neurons. Yet the neural circuitry underpinning such seemingly ordinary behaviors is not fully understood, even though better insights could lead to new therapies for disorders such as Parkinson’s disease, ALS and autism.

Recently, neuroscientists at the Salk Institute used stem cells to generate diverse networks of self-contained spinal cord systems in a dish, dubbed circuitoids, to study this rhythmic pattern in neurons. The work, which appears online in the February 14, 2017, issue of eLife, reveals that some of the circuitoids–with no external prompting–exhibited spontaneous, coordinated rhythmic activity of the kind known to drive repetitive movements.

Read more

While the recent cases of Ebola and Zika contributed to an emphasis on research, response, and policy related to EIDs, the meeting also had presentations on emerging biotechnologies. Of particular note was the Synthetic Biology panel, which focused on the current state of synthetic biology, its use in the health security defense enterprise, and the policy conundrums that need to be addressed.

Synthetic Biology – Complexity through Simplification

The first presenter, Dr. Christopher Voigt of the Synthetic Biology Center at MIT, noted that synthetic biology was the application of engineering principles to biological systems. The end goal of this bioengineering framework is to leverage ever-increasing computer capabilities to simplify both the designing and writing of genomic sequences. Further simplification would then allow for the creation of more complex systems.

Read more