Toggle light / dark theme

I was just telling someone today this very message. Of course they believe borders keep things from happening. Maybe physically; but not in an online retail and consumer world. Who are the most advance and real time responsive in meeting the interests and demands of consumers; will be the winners.


From time to time, the Singularity Hub editorial team unearths a gem from the archives and wants to share it all over again. It’s usually a piece that was popular back then and we think is still relevant now. This is one of those articles. It was originally published October 7, 2015. We hope you enjoy it!

You’ve heard the chatter: Robots and AI want your job. One famous study predicted 47% of today’s jobs may be automated by 2034. And if you want to know how likely it is you’ll be replaced by a robot, check out this BBC tool. (Writer = 33%. Yay?)

But nowhere is automation as immediately evident as it is in manufacturing. It’s been going on for decades, most obviously in automotive assembly and heavy machinery. Increasingly, however, more advanced robot factory workers are branching out.

Finally, maybe hope for GBM patients.


In a rapid-fire series of breakthroughs in just under a year, researchers at the University of North Carolina at Chapel Hill have made another stunning advance in the development of an effective treatment for glioblastoma, a common and aggressive brain cancer. The work, published in the Feb. 1 issue of Science Translational Medicine, describes how human stem cells, made from human skin cells, can hunt down and kill human brain cancer, a critical and monumental step toward clinical trials — and real treatment.

Last year, the UNC-Chapel Hill team, led by Shawn Hingtgen, an assistant professor in the Eshelman School of Pharmacy and member of the Lineberger Comprehensive Care Center, used the technology to convert mouse skin cells to stem cells that could home in on and kill human brain cancer, increasing time of survival 160 to 220 percent, depending on the tumor type. Now, they not only show that the technique works with human cells but also works quickly enough to help patients, whose median survival is less than 18 months and chance of surviving beyond two years is 30 percent.

Read more

Scientists at The Scripps Research Institute (TSRI) have found that deep brain stimulation (DBS) can greatly reduce the compulsion to use heroin in standard rat models of addiction.

Rats that were used to taking , and normally would have self-administered more and more of the drug, did not escalate their intake when treated with DBS.

The treatment involves the weak electrical stimulation, via implanted electrodes, of a brain region called the subthalamic .

Read more

No more smartphones.


In Brief

  • Researchers are finding ways for us to communicate using only our minds, going so far as to give people in separate rooms the ability to send answers to each other without speaking.
  • If we can hone this technology, it could help people with paralysis or other physical disorders regain the ability to communicate or perform physical tasks.

Imagine living in a world in which verbal communication is no longer required, a society in which telepathy is the norm, where people would be able to “speak” to each other using only their thoughts.

Scientists have long been contemplating the possibilities of brain-to-brain communication in humans, and it appears as though their dreams could become a reality within the next year or so. Such a system would be made possible via major advances in the technology that have been achieved via recent trials involving animals.

Great method btw.


Epilepsy is the fourth most common neurological disorder in the United States. Patients who have it are of all ages and it can seriously limit one’s ability to enjoy life. It’s a spectrum disorder which means the kinds of seizures people suffer and how they are managed will vary depending on the patient. Currently about 3 million people in the US are living with epilepsy and experts predict that at least 1 in 26 people will develop epilepsy at some point in their lifetime. While epilepsy is most often treated with anti-seizure medication, there are some patients who have not benefitted from medication. This form of the disorder is called drug-resistant epilepsy and can be very difficult to treat.

There are surgical options, but it’s crucial to have a good picture of the brain’s anatomy before any surgery is undertaken. Currently there are two methods for this. A recent article published by the American Academy of Neurology in the medical journal Neurology, looked at the two methods and revised the guidelines for each. The more common method of mapping the brain before surgery is the intracarotid amobarbital procedure, also known as the Wada test. In this procedure one side of the brain is anesthetized by injecting medication via the carotid artery. It’s invasive, can be uncomfortable and does carry some risk. The other way to get a look at the brain architecture is to use functional MRI scans.

Read more

Certainly explains patterns in certain families.


TUESDAY, Jan. 31, 2017 (HealthDay News) — Developing or worsening type 2 diabetes could be an early sign of pancreatic cancer, new research suggests.

Researchers analyzed data from nearly a million patients with type 2 diabetes or pancreatic cancer in Italy and Belgium. Half of all pancreatic cancer cases were diagnosed within a year of patients being diagnosed with diabetes, the findings showed.

The investigators also found that type 2 diabetes patients whose condition deteriorated rapidly requiring more aggressive treatment were also at increased risk for pancreatic cancer.

Nice.


When you think of diamonds, rings and anniversaries generally come to mind. But one day, the first thing that will come to mind may be bone surgery. By carefully designing modified diamonds at the nano-scale level, a Missouri University of Science and Technology researcher hopes to create multifunctional diamond-based materials for applications ranging from advanced composites to drug delivery platforms and biomedical imaging agents.

Dr. Vadym Mochalin, an associate professor of chemistry and materials science and engineering at Missouri S&T, is characterizing and modifying 5-nanometer nanodiamond particles produced from expired military grade explosives so that they can be developed to perform specific tasks. His current research studies their use as a filler in various types of composites.

Mochalin hopes to develop a way to uniformly incorporate the nanodiamonds and form strong chemical bonds between them to help design composite structures that can be used in medical applications, oil drilling bits, polishing and lubricating compositions, and even energy storage systems. Nanodiamonds are the ideal choice for such applications because they are mechanically strong, chemically stable and non-toxic. They can also form bonds with many other materials due to their tailorable surface chemistry.

To learn more about Breakthrough Starshot, visit http://breakthroughinitiatives.org.

On the fifty-fifth anniversary of Yuri Gagarin’s great leap into space, April 12, 2016, Yuri Milner was joined by Stephen Hawking at New York’s One World Observatory to announce Breakthrough Starshot, which will lay the foundations for humanity’s next great leap: to the stars. It was also announced that Mark Zuckerberg joined the board of the initiative.

Breakthrough Starshot is a $100 million research and development program, aiming to establish proof of concept for a ‘nanocraft’ – a fully functional space probe at gram-scale weight – driven by a light beam. A spacecraft like this, equipped with a lightsail, has the potential to reach twenty percent of the speed of light – or 100 million miles an hour. At that speed, it could reach Alpha Centauri, our nearest star system, in around 20 years. Using the fastest conventional rocket propulsion system available, the same journey would take tens of thousands of years.

This new scientific initiative is committed to international collaboration, open access and open data. It aims to represent all of humanity as one world, stepping out into the galaxy within a generation.