Toggle light / dark theme

Get the latest international news and world events from around the world.

Log in for authorized contributors

Scientists discover how to wipe out breast cancer’s hidden cells

Scientists at the University of Pennsylvania have shown for the first time that it’s possible to detect dormant cancer cells in breast cancer survivors and eliminate them with repurposed drugs, potentially preventing recurrence. In a clinical trial, existing medications cleared these hidden cells in most participants, leading to survival rates above 90%. The findings open a new era of proactive treatment against breast cancer’s lingering threat, offering hope to survivors haunted by the fear of relapse.

Physicists create a new kind of time crystal that humans can actually see

Imagine a clock that doesn’t have electricity, but its hands and gears spin on their own for all eternity. In a new study, physicists at the University of Colorado Boulder have used liquid crystals, the same materials that are in your phone display, to create such a clock—or, at least, as close as humans can get to that idea. The team’s advancement is a new example of a “time crystal.” That’s the name for a curious phase of matter in which the pieces, such as atoms or other particles, exist in constant motion.

The researchers aren’t the first to make a time crystal, but their creation is the first that humans can actually see, which could open a host of technological applications.

“They can be observed directly under a microscope and even, under special conditions, by the naked eye,” said Hanqing Zhao, lead author of the study and a graduate student in the Department of Physics at CU Boulder.

Physics-based indicator predicts tipping point for collapse of Atlantic current system in next 50 years

The Atlantic Meridional Overturning Circulation (AMOC) is an enormous loop of ocean current in the Atlantic Ocean that carries warmer waters north and colder waters south, helping to regulate the climate in many regions. The collapse of this critical circulation system has the potential to cause drastic global and regional climate impacts, like droughts and colder winters, especially in Northwestern Europe.

Researchers create 2D nanomaterials with up to nine metals for extreme conditions

Two-dimensional nanomaterials only a few atoms thick are being explored for a range of critical applications in biomedicine, electronics, nanodevices, energy storage and other areas, especially to enhance performance in extreme environments and ultra-demanding conditions.

New non-volatile memory platform built with covalent organic frameworks

Researchers at Institute of Science Tokyo have created a new material platform for non-volatile memories using covalent organic frameworks (COFs), which are crystalline solids with high thermal stability. The researchers successfully installed electric-field-responsive dipolar rotors into COFs.

Due to the unique structure of the COFs, the dipolar rotors can flip in response to an without being hampered by a steric hindrance from the surroundings, and their orientation can be held at ambient temperature for a long time, which are necessary conditions for non-volatile memories. The study is published in the Journal of the American Chemical Society.

Humans have made great efforts to record information by inventing recording media such as clay, paper, compact disks, and semiconductor memories. As the physical entity that holds information—such as indentations, characters, pits, or transistors—becomes smaller and its becomes higher, the information is stored with higher density. In rewritable memories, the class called “non-volatile memories” are suitable for storing data for a long time, such as for days and years.

AI turns printer into a partner in tissue engineering

In 3D bioprinting, researchers use living cells to create functional tissues and organs. Instead of printing with plastic, they print with living cells. This comes with great challenges. Cells are fragile and wouldn’t survive a regular 3D . That’s why Levato’s team developed a special bio-ink, a mix of living cells and nourishing gels that protect the cells during the printing process.

With the advancements in bio-inks, layer-by-layer 3D bioprinting became possible. But this method is still time-consuming and puts a lot of stress on the cells. Researchers from Utrecht came up with a solution: volumetric bioprinting.

Volumetric bioprinting is faster and gentler on cells. Using cell-friendly laser light, a 3D structure is created all at once. “To build a structure, we project a series of light patterns into a spinning tube filled with light-sensitive gel and cells,” Levato explains. “Where the light beams converge, the material solidifies. This creates a full 3D object in one go, without having to touch the cells.” To do this, it is crucial to know exactly where the cells are in the gel. GRACE now makes that possible.

Charged microdroplets enable mineralization of persistent PFAS pollutants

Anthropogenic perfluoroalkyl and polyfluoroalkyl substances (PFAS) are widespread and persistent pollutants that are increasingly subject to stringent regulatory thresholds in water resources. Current nonthermal defluorination strategies have limitations including incomplete mineralization, leaving behind short-chain PFAS byproducts and residual fluoride ions, thereby posing challenges to meeting water quality standards.

Atoms, ja, atoms’: Physics pioneer key to microscopy ‘revolution in resolution

Seventy years ago, in Osmond Laboratory on Penn State’s University Park campus, Erwin W. Müller, Evan Pugh Research Professor of Physics, became the first person to “see” an atom. In doing so, Müller cemented his legacy, not only at Penn State, but also as a pioneer in the world of physics and beyond.

/* */