Toggle light / dark theme

MIT researchers have innovated a method to observe the interaction between genes and enhancers by monitoring their activation times, helping to pinpoint drug targets for genetic disorders. This technique also enhances understanding of eRNA’s function in gene regulation and disease treatment.

Gene Expression and Enhancer Mapping

Although the human genome contains about 23,000 genes, only a fraction of those genes are turned on inside a cell at any given time. The complex network of regulatory elements that controls gene expression includes regions of the genome called enhancers. These are often located far from the genes that they regulate.

Proteins carry out many of the essential function of cells, and scientists have spent years learning about the expression of protein-coding genes. When genes are active, they are transcribed as messenger RNA (mRNA) molecules, which are then exported from the nucleus of the cell, where the DNA is kept, and into the cytoplasm, where mRNA molecules are translated into proteins. But many RNA molecules that do not code for protein are also exported from the nucleus and into the cytoplasm.

Scientists wanted to know more about what this non-coding RNA is doing, especially since it can often be found at high levels. Reporting in Nature, scientists have now used yeast cells to show that many of these non-coding RNA molecules are antisense RNAs (asRNAs), which have sequences that are complementary to mRNAs. So the right asRNA can anneal to its mRNA match. This turns out to promote the export of mRNAs from the nucleus to the cytoplasm, which boosts gene expression; a kind of “superhighway” for the transport of mRNAs is created with asRNAs to accelerate gene activity.

Who says you need a bomber or stealth fighter to air-launch a hypersonic missile? Boeing just unveiled a new concept that it’s developing called the Revolver launch system. Straight Arrow News on social media:
Facebook: / straightarrownews.
Twitter: / straightarrow__
Instagram: / straightarrownews.
TikTok: / straightarrownews.

For more SAN content: https://san.com/
Sign up for our weekly newsletters: https://san.com/newsletters/

The study suggests these primordial black holes could have absorbed free quarks and gluons, making them different from typical black holes formed by collapsing stars. They would be incredibly small, yet could account for much of the universe’s dark matter.


For decades, scientists have struggled to explain the lack of visible matter in the universe.

Watch more interviews on the deep laws of nature: https://shorturl.at/P6tIr Does information work at the deep levels of physics, including quantum theory, undergirding the fundamental forces and particles? But what is the essence of information—describing how the world works or being how the world works. There is a huge difference. Could information be the most basic building block of reality? Support the show with Closer To Truth merchandise: https://bit.ly/3P2ogje Follow us on Instagram for news, giveaways, announcements, and more: https://shorturl.at/dnA39 Raphael Bousso is a theoretical physicist and string theorist. He is a professor at Department of Physics, UC Berkeley. He is known for the proposal of Bousso’s holographic bound, also known as the covariant entropy bound. For members-only benefits, register for a free CTT account today: https://shorturl.at/ajRZ8 Closer To Truth, hosted by Robert Lawrence Kuhn and directed by Peter Getzels, presents the world’s greatest thinkers exploring humanity’s deepest questions. Discover fundamental issues of existence. Engage new and diverse ways of thinking. Appreciate intense debates. Share your own opinions. Seek your own answers.

Robots with human skin.


In a breakthrough that isn’t at all creepy, scientists have devised a method of anchoring living human skin to robots’ faces. The technology could actually have some valuable applications, beyond making Westworld-like scenarios a reality.

Two years ago, Prof. Shoji Takeuchi and colleagues at the University of Tokyo successfully covered a motorized robotic finger with a bioengineered skin made from live human cells.

It was hoped that this proof-of-concept exercise might pave the way not only for more lifelike android-type robots, but also for bots with self-healing, touch-sensitive coverings. The technology could additionally be used in the testing of cosmetics, and the training of plastic surgeons.

Japan has found metal deposits useful for EVs.

Researchers probe seabed remotely:


Manganese, cobalt, and nickel are important constituents of lithium-ion batteries, and therefore are considered essential for advancing EV production.

The researchers estimate that the deposits, which are spread across an area of around 10,000 square meters, roughly contain approximately 610,000 tonnes of cobalt and 740,000 tonnes of nickel.

Astronomy lovers, a comet will be visible in the night sky this summer! Although you may need binoculars or a telescope to view it, it’ll be the first time this comet has been visible since 1956, according to Star Walk.

Comet 13P/Olbers will make its return to the night sky this July, marking the first time in 69 years that it’s been able to be seen from Earth. According to experts at Star Walk, while faint, its sky placement and distance to the sun will allow it to be best visible around June 30, which is this Sunday.

Those interested in seeing the comet will have to look west about two hours after sunset.