Toggle light / dark theme

Deep ultraviolet (DUV) lasers, known for their high photon energy and short wavelengths, are essential in various fields such as semiconductor lithography, high-resolution spectroscopy, precision material processing, and quantum technology. These lasers offer increased coherence and reduced power consumption compared to excimer or gas discharge lasers, enabling the development of more compact systems.

As reported in Advanced Photonics Nexus, researchers from the Chinese Academy of Sciences have made a significant advancement by developing a compact, solid-state laser system capable of generating 193-nm coherent light.

This wavelength is crucial for photolithography, a process used to etch intricate patterns onto , forming the backbone of modern electronic devices.

Aging brains may struggle to clear out waste, contributing to memory loss and diseases like Alzheimer’s. But researchers have now found that improving the brain’s waste-draining vessels in old mice actually boosted their memory. Rather than targeting the brain directly, which is tricky due to the

Scientists have developed a model that predicts a massive boost in OLED brightness using polaritons—hybrid light-matter states.

By fine-tuning the number of molecules involved, they achieved a staggering 10-million-fold improvement in efficiency. This discovery could transform OLED technology, making displays brighter and more power-efficient than ever.

A bright new future for oleds?

For the first time, scientists have directly measured the cross-section of a weak r-process nuclear reaction using a radioactive ion beam. Specifically, the team studied the reaction 94Sr(α, n)97Zr, where a radioactive isotope of strontium (strontium-94) absorbs an alpha particle (a helium nucleus), emits a neutron, and becomes zirconium-97.

The findings have been published as an Editors’ Suggestion in Physical Review Letters

<em> Physical Review Letters (PRL)</em> is a prestigious peer-reviewed scientific journal published by the American Physical Society. Launched in 1958, it is renowned for its swift publication of short reports on significant fundamental research in all fields of physics. PRL serves as a venue for researchers to quickly share groundbreaking and innovative findings that can potentially shift or enhance understanding in areas such as particle physics, quantum mechanics, relativity, and condensed matter physics. The journal is highly regarded in the scientific community for its rigorous peer review process and its focus on high-impact papers that often provide foundational insights within the field of physics.

In the desert areas of Namibia, Oman, and Saudi Arabia, research work has revealed unusual structures that are probably due to the activity of an unknown microbiological life form. Unusually small burrows, i.e., tiny tubes that run through the rock in a parallel arrangement from top to bottom, were discovered in marble and limestone of these desert regions. “We were surprised because these tubes are clearly not the result of a geological process,” said Professor Cees Passchier from Johannes Gutenberg University Mainz (JGU), who first came across the phenomenon during geological field work in Namibia. During subsequent sample investigations, evidence of biological material was found. Evidently, microorganisms had perforated the rock. “We don’t currently know whether this is a life form that has become extinct or is still alive somewhere,” added Passchier.

Puzzling discovery in Namibia

Geologist Cees Passchier has been working in Namibia for 25 years, among other places. His research focuses on the geological reconstruction of Precambrian terranes. “We look at the structure of the rocks to find out how continents came together to form the supercontinent Gondwana 500 to 600 million years ago,” explained Passchier. At that time, carbonate deposits formed in the ancient oceans and turned into marble due to pressure and heat. “We noticed strange structures in this marble that were not the result of geological events.” Instead of smooth erosion surfaces, tubes could be seen that were about half a millimeter wide and up to three centimeters long, lined up parallel to one another and forming bands up to ten meters long. Some calcrete crusts had formed on the edges.

The researchers turned to a group of molecules called acylcarnitines, which are associated with declining cognition and breaking down or metabolizing fats and proteins for energy. To test if high acylcarnitine levels in the blood could predict who’s at risk of developing Alzheimer’s, the researchers used data from a large-scale study called the Alzheimer’s Disease Neuroimaging Initiative.

“It was fascinating,” the author said. “Dividing research participants into groups based on their specific acylcarnitine levels highlighted people with more severe Alzheimer’s disease and others with fewer symptoms.” This led the researchers to define a bioenergetic clock based on acylcarnitines—how old a person’s metabolism acts, compared to actual age. Higher bioenergetic age is linked to higher acylcarnitine levels, worsened Alzheimer’s pathology, cognitive decline and brain atrophy.

The researchers also quantified cognitive decline using a common test called the mini-mental state examination, on which a score below 24 out of 30 points indicates impairment. They found that people with low acylcarnitine levels to begin with declined more slowly, losing about 0.5 points less per year than people with high acylcarnitine levels. The benefit is on par with the Alzheimer’s drug lecanemab.

To some degree, a person’s bioenergetic clock ticks forward at a rate determined by their genetics, but having a healthy lifestyle—for example, eating a plant-based diet and exercising —can help keep acylcarnitine levels low, which means a younger bioenergetic age, the author explained.

They went on to identify a subgroup of participants, about 30% of the Alzheimer’s Disease Neuroimaging Initiative, with older bioenergetic age but favorable genetic background. These individuals may benefit more from early lifestyle interventions designed to decrease their bioenergetic age and potentially delay or prevent the onset of Alzheimer’s.

Moving forward, the senior author hopes to home in on the lifestyle interventions most effective for lowering bioenergetic age. For example, eating a low-carb diet may help maintain metabolic health, but just how low would carbohydrate consumption have to be for a person to see benefits?


The universe looks a little different in mid-infrared light, a longer wavelength captured by the James Webb Space Telescope.

Don’t be distracted by distant stars and galaxies that look like multi-colored candies! Instead draw your attention to the “messy” blue “scoop.” This is one of two galaxies in Arp 107. The blue orb to its left is interreacting with it, making up its other “half.”

What’s remarkable about this image is that the bright diffraction spikes in the larger galaxy on the right are from its active supermassive black hole.

See a “bridge” that connects the pair in Webb’s near-infrared light observations.


Arp 107, a pair of interacting galaxies, shines brightly in high-resolution infrared light. A collision, which occurred hundreds of millions ago, created a tenuous bridge of gas and dust that connects the two galaxies, and started a new wave of star formation that NASA’s James Webb Space Telescope captures clearly.