Toggle light / dark theme

THE numbers are stark. Cancer claimed the lives of 8.8m people in 2015; only heart disease caused more deaths. Around 40% of Americans will be told they have cancer during their lifetimes. It is now a bigger killer of Africans than malaria. But the statistics do not begin to capture the fear inspired by cancer’s silent and implacable cellular mutiny. Only Alzheimer’s exerts a similar grip on the imagination.

Confronted with this sort of enemy, people understandably focus on the potential for scientific breakthroughs that will deliver a cure. Their hope is not misplaced. Cancer has become more and more survivable over recent decades owing to a host of advances, from genetic sequencing to targeted therapies. The five-year survival rate for leukemia in America has almost doubled, from 34% in the mid-1970s to 63% in 2006-12. America is home to about 15.5m cancer survivors, a number that will grow to 20m in the next ten years. Developing countries have made big gains, too: in parts of Central and South America, survival rates for prostate and breast cancer have jumped by as much as a fifth in only a decade.

Read more

Despite sounding like the most egregious contradiction in physics, hot water appears to freeze faster than cold water under certain circumstances. The phenomenon can be traced back to Aristotle himself, but after centuries of experiments demonstrating this phenomenon, no one’s been able to explain it.

Now physicists are pointing to strange properties of hydrogen bonds as the solution to one of the oldest mysteries in physics — but others are claiming the so-called Mpemba effect doesn’t even exist at all.

For a bit of background into the Mpemba effect, this phenomenon has been confounding physicists since Aristotle first noticed it more than 2,000 years ago.

Read more