Menu

Blog

Page 10633

Nov 20, 2015

Medical robots – the future of surgery?

Posted by in categories: biotech/medical, business, robotics/AI

For some people the idea of being operated on by a robot might sound horrifying, particularly if there isn’t even a doctor in the room to check that everything is running smoothly. Surgery is in any case a risky business that few would undertake willingly if it wasn’t absolutely necessary, and it seems unlikely that the spectacle of an enormous machine with mechanical arms attached to surgical scalpels would reassure anyone about having to undergo an operation. However, the use of robotic surgery has spread rapidly in recent years and for some types of operations it is becoming the standard. While there is a lot of controversy surrounding the topic, many doctors see surgical robots as a vital tool to provide better medical care and lower the risks associated with surgery.

History of robotic surgery

The roots of robotic surgery go back to the mid-1980s, when a robotic surgical arm was first used to perform a neurosurgical biopsy. Two years later, the first robot-assisted laparoscopic (i.e. keyhole) operation was conducted, a cholecystectomy. The following years saw continued advances in the area of robotic surgery, which was used for a growing range of surgical procedures. One of the earliest robotic surgical systems to enter into general use was the ROBODOC system, which came on the market in the early 1990s and allowed surgeons conducting hip replacements to mill the femur with more precision that would have been conventionally possible.

Read more

Nov 20, 2015

Quantum entanglement achieved at room temperature in semiconductor wafers

Posted by in categories: computing, electronics, particle physics, quantum physics

Entanglement is one of the strangest phenomena predicted by quantum mechanics, the theory that underlies most of modern physics. It says that two particles can be so inextricably connected that the state of one particle can instantly influence the state of the other, no matter how far apart they are.

Just one century ago, was at the center of intense theoretical debate, leaving scientists like Albert Einstein baffled. Today, however, entanglement is accepted as a fact of nature and is actively being explored as a resource for future technologies including quantum computers, quantum communication networks, and high-precision quantum sensors.

Entanglement is also one of nature’s most elusive phenomena. Producing entanglement between particles requires that they start out in a highly ordered state, which is disfavored by thermodynamics, the process that governs the interactions between heat and other forms of energy. This poses a particularly formidable challenge when trying to realize entanglement at the macroscopic scale, among huge numbers of particles.

Read more

Nov 20, 2015

A Virtual Reality Revolution, Coming to a Headset Near You — By Lorne Manly | The New York Times

Posted by in categories: business, hardware, innovation, journalism, media & arts, virtual reality, wearables

22VIRTUAL-master675

Read more

Nov 20, 2015

Moore Foundation Gives Stanford $13.5 Million To Build “Accelerator on a Chip”

Posted by in categories: biotech/medical, computing, electronics, mobile phones, particle physics, security

Today’s particle accelerators are massive machines, but physicists have been working on shrinking them down to tabletop scales for years. The Gordon and Betty Moore Foundation just awarded a $13.5 million grant to Stanford University to develop a working “accelerator on a chip” the size of a shoebox over the next five years.

The international collaboration will build on prior experiments by physicists at SLAC/Stanford and Germany’s Friedrich-Alexander University in Erlangen-Nuremberg. If successful, the prototype could usher in a new generation of compact particle accelerators that could fit on a laboratory bench, with potential applications in medical therapies, x-ray imaging, and even security scanner technologies.

The idea is to “do for particle accelerators what the microchip industry did for computers,” SLAC National Accelerator Laboratory physicist Joel England told Gizmodo. Computers used to fill entire rooms back when they relied on bulky vacuum tube technology. The invention of the transistor and subsequent development of the microchip made it possible to shrink computers down to laptop and cell phone scales. England envisions a day when we might be able to build a handheld particle accelerator, although “there’d be radiation issues, so you probably wouldn’t want to hold one in your hand.”

Read more

Nov 20, 2015

Volvo teams with Microsoft HoloLens for virtual car buying

Posted by in categories: augmented reality, transportation

In the near future, car buyers may find themselves putting on Microsoft’s HoloLens augmented reality headset in order to check out a Volvo in a kind of virtual showroom. The car manufacturer has announced a partnership with Microsoft to incorporate the HoloLens into the car buying experience. The concept they debuted today images a customer and car dealer putting on the headset and interacting with a holographic car.

The HoloLens would allow users to do the typical things one would expect when shopping for a car, like comparing colors and wheel rims, as well as much more, like inspecting a projection of the engine from any angle, getting a view of what it’s like to sit inside, or experience demonstrations of a car’s unique features.

Read more

Nov 20, 2015

From air to plastic

Posted by in category: materials

This plastic is made from thin air — and taking on a $373 billion dollar-a-year industry: http://cnnmon.ie/1I2paBM

Read more

Nov 20, 2015

Offer networks: a new paradigm for developing an intelligent sharing economy

Posted by in category: economics

Transitioning to a Post-Employment, Post-Scarcity, Post-Money Economy in Which Collective Human and Machine Meaning Making Reigns.

Read more

Nov 20, 2015

Driving will be obsolete sooner than we thought

Posted by in categories: robotics/AI, transportation

The driverless revolution could kill the auto industry sooner than expected.

Read more

Nov 20, 2015

This high-tech car seat will detect your stress level and give you a massage

Posted by in categories: robotics/AI, transportation

It’s built specifically for self-driving cars.

Read more

Nov 20, 2015

Survival of the richest: how London’s super-rich are trying to buy immortality

Posted by in categories: biotech/medical, business, health, life extension

You’ve got the Lamborghini and the Learjet, the houses and quite possibly the palaces; Erdem designs your dresses and you’ve got heaps of diamonds. What next? Well, adornment can only take you so far: what good is that Lech heli-skiing pad when your knees are shot? What’s the point in building a multibillion-pound business when you’re unwittingly courting a heart attack? As technology evolves ever more rapidly, ultra high net worth individuals are turning their attention inward, investigating how to stall the ageing process, and spending serious money to load their dice against death.

Across the road from Harrods sits Omniya clinic, a calm, contemporary white space amid the hustle of Knightsbridge. At street level it is a luxuriously reimagined pharmacy, whose curated selection includes recent launches from Hollywood’s favourite ‘cosmeceutical’ brands Zo Skin Health and Dr Levy. ‘I wanted to create a place that brings the newest advancements in medical and regenerative health to London,’ says co-founder Danyal Kader, a former lawyer, radiant with bien-être. He was so depressed by the difficulty of finding the best medical treatment for his father, who suffers from a heart condition, that he decided to create his own one-stop conduit to wellness. ‘We optimise the lives our clients can lead, body, mind and soul.’ To this end, he has brought together a team of leading specialists who analyse the health of their clients in the most minute and sophisticated detail — a kind of space-age human MOT.

One of these is cellular ageing specialist Dr Mark Bonar. As his title suggests, Bonar is passionate about the very specific degradations that happen in the cells of the body as we age — and still more excited about the new ways he can use to slow such deterioration. Consider, for example, telomeres. ‘Telomeres are the caps on the ends of our DNA,’ Bonar explains. ‘A bit like the plastic on the end of a shoe lace, they prevent the ends from fraying. By measuring their length in the lab we can determine how well the body is ageing’ — for instance, if at 30, you show the wear and tear you’d expect in a 40-year-old. ‘The length can also inform you about your risk of various kinds of disease such as breast or bowel cancer.’

Read more