Toggle light / dark theme

A new computational technique developed enables the use of surface mapping technologies like GPS to analyze subsurface geological structures.

This method, termed deformation imaging, offers insights into the rigidity of the Earth’s crust and mantle, enhancing our understanding of geological processes like earthquakes. The technique has already provided a detailed view of subsurface areas during the 2011 Tohoku earthquake and has the potential for widespread future applications with satellite data.

New Geological Imaging Technique

Researchers have developed a genetic algorithm for designing phononic crystal nanostructures, significantly advancing quantum computing and communications.

The new method, validated through experiments, allows precise control of acoustic wave propagation, promising improvements in devices like smartphones and quantum computers.

Quantum Computing Revolution

As the modern world faces various environmental challenges, city dwellers are increasingly looking for more sustainable and energy-efficient mobility solutions for their daily commutes.


With a partially-enclosed body, comfy seats, and a steering wheel, this electric three-wheeler is much comfier and more stable than a regular bike.

Microbes that are used for health, agricultural, or other applications need to be able to withstand extreme conditions, and ideally the manufacturing processes used to make tablets for long-term storage. MIT researchers have now developed a new way to make microbes hardy enough to withstand these extreme conditions.

Their method involves mixing bacteria with food and drug additives from a list of compounds that the FDA classifies as “generally regarded as safe.” The researchers identified formulations that help to stabilize several different types of microbes, including yeast and bacteria, and they showed that these formulations could withstand high temperatures, radiation, and industrial processing that can damage unprotected microbes.

In an even more extreme test, some of the microbes recently returned from a trip to the International Space Station, coordinated by Space Center Houston Manager of Science and Research Phyllis Friello, and the researchers are now analyzing how well the microbes were able to withstand those conditions.